Space Industry and Business News  
CHIP TECH
Matter waves and quantum splinters
by Staff Writers
Houston TX (SPX) Mar 27, 2019

Rice University physicists and colleagues in Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (top) can cause them to either divide into the uniform segments characteristic of Faraday waves (center) or shatter into unpredictable splinters (bottom). The frequency and amplitude of the shaking determines the outcome. (Image courtesy of Gustavo Telles/University of Sao Paulo at Sao Carlos and Jason Nguyen/Rice University)

Physicists in the United States, Austria and Brazil have shown that shaking ultracold Bose-Einstein condensates (BECs) can cause them to either divide into uniform segments or shatter into unpredictable splinters, depending on the frequency of the shaking.

"It's remarkable that the same quantum system can give rise to such different phenomena," said Rice University physicist Randy Hulet, co-author of a study about the work published online in the journal Physical Review X. Hulet's lab conducted the study's experiments using lithium BECs, tiny clouds of ultracold atoms that march in lockstep as if they are a single entity, or matter wave. "The relationship between these states can teach us a great deal about complex quantum many-body phenomena."

The research was conducted in collaboration with physicists at Austria's Vienna University of Technology (TU Wien) and Brazil's University of Sao Paulo at Sao Carlos.

The experiments harken to Michael Faraday's 1831 discovery that patterns of ripples were created on the surface of a fluid in a bucket that was shaken vertically at certain critical frequencies. The patterns, known as Faraday waves, are similar to resonant modes created on drumheads and vibrating plates.

To investigate Faraday waves, the team confined BECs to a linear one-dimensional waveguide, resulting in a cigar-shaped BEC. The researchers then shook the BECs using a weak, slowly oscillating magnetic field to modulate the strength of interactions between atoms in the 1D waveguide. The Faraday pattern emerged when the frequency of modulation was tuned near a collective mode resonance.

But the team also noticed something unexpected: When the modulation was strong and the frequency was far below a Faraday resonance, the BEC broke into "grains" of varying size. Rice research scientist Jason Nguyen, lead co-author of the study, found the grain sizes were broadly distributed and persisted for times even longer than the modulation time.

"Granulation is usually a random process that is observed in solids such as breaking glass, or the pulverizing of a stone into grains of different sizes," said study co-author Axel Lode, who holds joint appointments at both TU Wien and the Wolfgang Pauli Institute at the University of Vienna.

Images of the quantum state of the BEC were identical in each Faraday wave experiment. But in the granulation experiments the pictures looked completely different each time, even though the experiments were performed under identical conditions.

Lode said the variation in the granulation experiments arose from quantum correlations - complicated relationships between quantum particles that are difficult to describe mathematically.

"A theoretical description of the observations proved challenging because standard approaches were unable to reproduce the observations, particularly the broad distribution of grain sizes," Lode said.

His team helped interpret the experimental results using a sophisticated theoretical method, and its implementation in software, which accounted for quantum fluctuations and correlations that typical theories do not address.

Hulet, Rice's Fayez Sarofim Professor of Physics and Astronomy, and a member of the Rice Center for Quantum Materials (RCQM), said the results have important implications for investigations of turbulence in quantum fluids, an unsolved problem in physics.

Research paper


Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Extremely accurate measurements of atom states for quantum computing
University Park PA (SPX) Mar 27, 2019
A new method allows the quantum state of atomic "qubits" - the basic unit of information in quantum computers - to be measured with twenty times less error than was previously possible, without losing any atoms. Accurately measuring qubit states, which are analogous to the one or zero states of bits in traditional computing, is a vital step in the development of quantum computers. A paper describing the method by researchers at Penn State appears March 25, 2019 in the journal Nature Physics. "We a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
ESA spacecraft dodges large constellation

Smarter experiments for faster materials discovery

China's Tianhe-2 Supercomputer to Crunch Space Data From New Radio Telescope

Defrosting surfaces in seconds

CHIP TECH
Interview with Ralf Faller about EDRS operations

Milestone for the future of networked satellite communications

AEHF-5 protected communications satellite now in transfer orbit

US Air Force awards contract for Enterprise Ground Services satellite operations

CHIP TECH
CHIP TECH
Second Lockheed Martin-Built Next Generation GPS III Satellite Responding to Commands, Under Self-Propulsion

UK seeking to enlist 'Five Eyes' for rival Galileo GPS system

Tiny GPS backpacks uncover the secret life of desert bats

Evolution of space, 2SOPS prepares for GPS Block III

CHIP TECH
Bye Aerospace Finalizes Garmin Supplier Agreement to Provide eFlyer 2 Avionics

Four F/A-18 Super Hornets damaged in E-2D carrier landing incident

Sikorsky nets $48.3M for CH-53K heavy-lift helicopter parts

Lockheed Martin wins two contracts for F-35 upgrades

CHIP TECH
Swedish researchers unveil world's smallest accelerometer

New insulation technique paves the way for more powerful and smaller chips

New perovskite material shows early promise as an alternative to silicon

Newfound superconductor material could be the 'silicon of quantum computers'

CHIP TECH
Philippine Airborne Campaign Targets Weather, Climate Science

Raytheon-built space sensor will fly aboard NASA satellite to measure coastal and ocean ecosystems

NASA's ECOSTRESS Detects Amazon Fires from Space

New Landsat Infrared Instrument Ships from NASA

CHIP TECH
Amazon to phase out single-use plastic in India

Hunger for concrete eats away at mountains

Italy reinstates legal protection for steel plant: ArcelorMittal

Congo president flies to environment talks on huge jet: sources









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.