Space Industry and Business News  
ENERGY TECH
Materials scientist creates fabric alternative to batteries for wearable devices
by Staff Writers
Amherst MA (SPX) Nov 12, 2018

UMass Amherst researchers led by materials chemist Trisha L. Andrew report that they have developed a method for making a charge-storing system that is easily integrated into clothing for "embroidering a charge-storing pattern onto any garment."

A major factor holding back development of wearable biosensors for health monitoring is the lack of a lightweight, long-lasting power supply. Now scientists at the University of Massachusetts Amherst led by materials chemist Trisha L. Andrew report that they have developed a method for making a charge-storing system that is easily integrated into clothing for "embroidering a charge-storing pattern onto any garment."

As Andrew explains, "Batteries or other kinds of charge storage are still the limiting components for most portable, wearable, ingestible or flexible technologies. The devices tend to be some combination of too large, too heavy and not flexible."

Their new method uses a micro-supercapacitor and combines vapor-coated conductive threads with a polymer film, plus a special sewing technique to create a flexible mesh of aligned electrodes on a textile backing. The resulting solid-state device has a high ability to store charge for its size, and other characteristics that allow it to power wearable biosensors.

Andrew adds that while researchers have remarkably miniaturized many different electronic circuit components, until now the same could not be said for charge-storing devices. "With this paper, we show that we can literally embroider a charge-storing pattern onto any garment using the vapor-coated threads that our lab makes. This opens the door for simply sewing circuits on self-powered smart garments." Details appear online in ACS Applied Materials and Interfaces.

Andrew and postdoctoral researcher and first author Lushuai Zhang, plus chemical engineering graduate student Wesley Viola, point out that supercapacitors are ideal candidates for wearable charge storage circuits because they have inherently higher power densities compared to batteries.

But "incorporating electrochemically active materials with high electrical conductivities and rapid ion transport into textiles is challenging," they add. Andrew and colleagues show that their vapor coating process creates porous conducting polymer films on densely-twisted yarns, which can be easily swelled with electrolyte ions and maintain high charge storage capacity per unit length as compared to prior work with dyed or extruded fibers.

Andrew, who directs the Wearable Electronics Lab at UMass Amherst, notes that textile scientists have tended not to use vapor deposition because of technical difficulties and high costs, but more recently, research has shown that the technology can be scaled up and remain cost-effective.

She and her team are currently working with others at the UMass Amherst Institute for Applied Life Sciences' Personalized Health Monitoring Center on incorporating the new embroidered charge-storage arrays with e-textile sensors and low-power microprocessors to build smart garments that can monitor a person's gait and joint movements throughout a normal day.

Research paper


Related Links
University of Massachusetts at Amherst
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Extending the life of low-cost, compact, lightweight batteries
Boston MA (SPX) Nov 09, 2018
Metal-air batteries are one of the lightest and most compact types of batteries available, but they can have a major limitation: When not in use, they degrade quickly, as corrosion eats away at their metal electrodes. Now, MIT researchers have found a way to substantially reduce that corrosion, making it possible for such batteries to have much longer shelf lives. While typical rechargeable lithium-ion batteries only lose about 5 percent of their charge after a month of storage, they are too costl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Creating better devices: The etch stops here

Unlocking the secrets of metal-insulator transitions

Doing the wave: how stretchy fluids react to wavy surfaces

Video game action heads for the cloud

ENERGY TECH
NSA certifies Harris AN/PRC-163 radio for top secret intelligence

Raytheon tapped by DARPA for high frequency digital communications research

Laser technology could be used to attract attention from aliens

Army scientist seeks enhanced soldier systems through quantum research

ENERGY TECH
ENERGY TECH
China successfully launches 41st BeiDou Navigation System Satellite

China launches BeiDou-3 navigation satellite into highest orbit yet

China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

ENERGY TECH
Boeing braces for trade war headwinds in China

Verdego Aero to provide hybrid-electric power propulsion option for Transcend Air VY 400 VTOL

Air Force conducts F-35 deployment exercises as operations ramp up

Bell, Electric Power Systems partner on hybrid-electric aircraft engines

ENERGY TECH
Bringing photonic signaling to digital microelectronics

China challenges US to provide 'evidence' in trade secrets case

US accuses China, Taiwan firms with stealing secrets from chip giant Micron

Brain-inspired methods to improve wireless communications

ENERGY TECH
Europe's third polar-orbiting weather satellite lofted into orbit

Orbit Logic delivers Landsat mission planning system

The cloud will save time, money, and reduce errors in the mapping process

MetOp-C ready for big day

ENERGY TECH
Delhi bans trucks as megacity chokes

Delhi suffers toxic smog hangover after Diwali firework frenzy

Polluted Delhi air akin to death sentence, say doctors

Indian firework sellers fume over festival 'eco-cracker' ban









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.