Subscribe free to our newsletters via your
. Space Industry and Business News .




STELLAR CHEMISTRY
Mass map shines light on dark matter
by Staff Writers
Lemont IL (SPX) Jul 16, 2015


By cross-correlating a galaxy distribution map and a mass map derived from weak gravitational lensing, a team of researchers that included Argonne National Laboratory's Vinu Vikraman showed how the galaxy distribution traces that of the dark matter. Image courtesy Vinu Vikraman / Argonne National Laboratory. For a larger version of this image please go here.

Dark matter may find it tougher to hide in our universe. An international team of researchers has developed a new map of the distribution of dark matter in the universe using data from the Dark Energy Survey (DES).

The DES, underway at the Blanco telescope in Chile, is a cosmological galaxy survey that will map approximately an eighth of the visible sky. The primary aim of the DES is to better characterize dark energy - the source of the observed accelerated expansion of the universe. But one of the ways of doing this is through studying the distribution and evolution of another scientific mystery: dark matter.

Scientists estimate that ordinary atomic matter makes up only one-fifth of the total mass in the universe. The remaining mass is dark - "dark" because it does not absorb or emit light.

Scientists need a precise measurement of all the matter in the universe and where it is located to perform cosmological experiments accurately, said Vinu Vikraman, a postdoctoral researcher at the U.S. Department of Energy's Argonne National Laboratory and co-author of the study.

"We don't know what dark matter really is or how to directly locate it in the universe," Vikraman said. "This map will act as a valuable tool for cosmology to answer some of these questions, including those related to dark energy."

To indirectly detect dark matter, the scientists constructed a "mass map" using weak gravitational lensing shear measurements made by the DES. Gravitational lensing refers to the bending of light by the mass surrounding galaxies. This bending creates a distortion, or shear, of the galaxy's shape, which scientists can then measure to determine the density and matter distribution of the lens.

The researchers then compared the mass map with a new optical galaxy distribution map, also made from DES data. The information allowed the scientists to look for patterns in the distribution of galaxies and dark matter.

"It also allows us to check our work," Vikraman said, "since the distribution of galaxies is expected to trace the distribution of dark matter."

The relationship between the galaxy distribution and the mass map is close to that predicted by theoretical models based on cosmological simulations that include an accelerated expansion of the universe.

DES data are projected to cover more than 36 times the area of this initial map. Scientists are hopeful that this set of data will lead to new clues about the nature of dark energy.

The research appears in two papers, Vikram et al., "Wide-Field Lensing Mass Maps from the DES Science Verification Data: Methodology and Detailed Analysis," in Physical Review D (in press) and Chang et al., "Wide-Field Lensing Mass Maps from DES Science Verification Data," published June 24 in Physical Review Letters. The U.S. Department of Energy's Office of Science, the National Science Foundation and the collaborating institutions in the DES funded the study.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
DOE/Argonne National Laboratory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
A Dark Matter bridge in our cosmic neighborhood
Potsdam, Germany (SPX) Jul 15, 2015
By using the best available data to monitor galactic traffic in our neighborhood, Noam Libeskind from the Leibniz Institute for Astrophysics Potsdam (AIP) and his collaborators have built a detailed map of how nearby galaxies move. In it they have discovered a bridge of Dark Matter stretching from our Local Group all the way to the Virgo cluster - a huge mass of some 2,000 galaxies roughly ... read more


STELLAR CHEMISTRY
A cool way to form 2-D conducting polymers using ice

Engineers give invisibility cloaks a slimmer design

Rubber expansion threatens biodiversity and livelihoods

Disney gives sneak peek for planned China theme park

STELLAR CHEMISTRY
Lockheed Martin set to advance RF sensors development

Navy engineer invents new data transmission system

Fourth MUOS arrives in Florida for August launch

Airbus DS unveils new mobile welfare communication portfolio

STELLAR CHEMISTRY
Baikonur Cosmodrome to Be Equipped With Viewing Platforms

30 launches planned in next three fiscals: ISRO chief

India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

STELLAR CHEMISTRY
China's Beidou navigation system to track flights

Russia's GLONASS Proves More Than a Match for America's GPS

Russia, Brazil to track space junk with GLONASS

Russian, Chinese Navigation Systems to Accommodate BRICS Members

STELLAR CHEMISTRY
Europe advances with safer air travel

China Eastern orders 50 Boeing planes in $4.6 bn deal

Solar Impulse grounded in Hawaii for repairs

Climate change activists protest on Heathrow runway

STELLAR CHEMISTRY
Ultrafast spectroscopy used to examine magnetoresistance systems

New insight into the fundamentals of solid state physics

Could black phosphorus be the next silicon?

Down to the quantum dot

STELLAR CHEMISTRY
Estimating Earth's last pole reversal using radiometric dating

NASA data shows surfer-shaped waves in near-Earth space

India Launches EO Constellation for UK-China Project

Near-Earth space hosts Kelvin-Helmholtz waves

STELLAR CHEMISTRY
Severe harmful algal bloom for Lake Erie predicted

Pope urges dialogue, launches environmental SOS in Ecuador

The Good, the Bad, and the Algae

Water used for hydraulic fracturing varies widely across United States




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.