Space Industry and Business News  
WATER WORLD
Marine exploration sensing with light and sound
by Staff Writers
Thuwal, Saudi Arabia (SPX) Mar 29, 2018

KAUST researchers are modeling various techniques for improving wireless underwater sensor networks. For example, new wireless hybrid sensors that use both acoustic and optical communication could improve underwater data collection for ocean observation.

Oceanic sensor networks that collect and transmit high-quality, real-time data could transform our understanding of marine ecology, improve pollution and disaster management, and inform the multiple industries that draw on ocean resources. A KAUST research team is designing and optimizing underwater wireless sensor networks that could vastly improve existing ocean sensing equipment.

"Currently, underwater sensors use acoustic waves to communicate data," explains Nasir Saeed, who is working on a new hybrid optical-acoustic sensor design with colleagues Abdulkadir Celik, Mohamed Slim Alouini and Tareq Al-Naffouri.

"However, while acoustic communication works over long distances, it can only transmit limited amounts of data with long delays. Recent research has also shown that noise created by humans in the oceans adversely affects marine life. We need to develop alternative, energy-efficient sensors that limit noise pollution while generating high-quality data."

One option is to use optical communication technology instead, but light waves will only travel short distances underwater before they are absorbed. Optical sensors also rely heavily on pointing and tracking mechanisms to ensure they are correctly orientated to send and receive signals. The team therefore propose a hybrid sensor capable of transmitting both acoustic and optical signals simultaneously. In this way, a data-collection buoy on the water surface can communicate with every sensor in a network spread out beneath it.

However, marine research requires accurate measurements taken from precise locations, so scientists need to know where every sensor is at any given time. The team used mathematical modeling to develop a proof-of-concept localization technique.

"Using our technique, the sensors transmit their received signal strength information (RSSI) to the surface buoy," says Saeed. "For a large communication distance, the sensors use acoustic signals, but if the sensor is within close range of another sensor, it will send an optical signal instead."

Multiple RSSI measurements for each sensor are collected by the surface buoy. The buoy then weights these measurements to give preference to the most accurate readings before calculating where each sensor is positioned.

Alouini's and Al-Naffouri's teams propose that their sensors will require a new energy source rather than relying on short-term battery power. They envisage an energy-harvesting system that powers fuel cells using microscopic algae or piezoelectric (mechanical stress) energy.

Research paper


Related Links
King Abdullah University of Science and Technology
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
Self-driving robots collect water samples to create snapshots of ocean microbes
Honolulu HI (SPX) Mar 14, 2018
For the first time, scientists from the University of Hawai'i at Manoa (UH Manoa) and the Monterey Bay Aquarium Research Institute (MBARI) will deploy a small fleet of long-range autonomous underwater vehicles (LRAUVs) that have the ability to collect and archive seawater samples automatically. These new robots will allow researchers to track and study ocean microbes in unprecedented detail. Ocean microbes produce at least fifty percent of the oxygen in our atmosphere while removing large amounts ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Researchers use 3-D printing to create metallic glass alloys

Pressing a button is more challenging than appears

New 'AR' Mobile App Features 3-D NASA Spacecraft

Diamond powers first continuous room-temperature solid-state maser

WATER WORLD
Intelsat EpicNG helping redefine capabilities of airborne applications

Studies prove superior performance of HTS for government customers

Airbus to provide near real-time access to its satellite data

Increasing Situational Awareness with Fortion TacticalC2

WATER WORLD
WATER WORLD
Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

Europe claims 100 million users for Galileo satnav system

WATER WORLD
Airbus Helicopters tapped for additional UH-72A helicopters

Japan's E-2D program to receive training, support from Northrop Grumman

United Technologies wins contract for F-35 engines

In a trade war, aviation giant Boeing could be a sitting duck

WATER WORLD
Toshiba awaits regulator approval for key chip unit sale

Intel says chips addressing flaws set for release this year

Precision atom qubits achieve major quantum computing milestone

Largest molecular spin found close to a quantum phase transition

WATER WORLD
A space window to electrifying science

NASA renews focus on Earth's frozen regions

Sentinel-3B launch preparations in full swing

Taking the Pulse of Greenhouse Gases

WATER WORLD
Five ways to halt 'critical' land decay

New solution to harmful algal blooms raises hope of economic and environmental benefits

EU considers financial system alignment with green goals

Gambian activists take action against polluting Chinese firm









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.