Space Industry and Business News  
STELLAR CHEMISTRY
Manipulating cell networks with light
by Staff Writers
Kobe, Japan (SPX) Jan 29, 2019

This is an illustration of optical stimulation of cell activity in human brain and plant cells by holographic optogenetics.

A new optical microscope system called SIFOM (Stimulation and Imaging-based Functional Optical Microscopy) can stimulate multiple cells simultaneously by a holographic method and monitor cell activity after the stimulation using 3D (three-dimensional) measurements based on fluorescence holography.

This system has potential applications as a tool for the reconstruction of lost nerve pathways, constructing artificial neural networks, and food resources development. The concept of SIFOM and the feasibility check were published on November 1 in Optics Letters, one of the top journals of the optics and photonics research field.

So far, many optical microscopies such as phase contrast microscopy, fluorescence microscopy, multi-photon microscopy, and super-resolved fluorescence microscopy have been developed. Recent breakthroughs in optics technology have enabled scientists to visualize the ultrafine structure of cells and their functions even in vitro and in vivo.

We can now use the light to manipulate cell activity as in optogenetics by using channelrhodopsin or other related proteins (see figure 1). However, the present optogenetics-based light stimulation used to manipulate cell activity is too simple, using uniform exposure by LED or through optic fibers, so only a low level of cell manipulation is possible.

This study proposes a new optical microscope system called SIFOM (figure 2). The SIFOM consists of two sub-functions: 3D observation of cells and 3D stimulation of cells based on digital holography. This is the first microscope to be equipped with technology that can simultaneously carry out 3D observation and stimulation, and it has potential applications as a groundbreaking tool in the life sciences.

Using high-speed scanless photography, this technology makes it possible for us to gain information about multiple events occurring in 3D space within a very short time frame.

As a verification experiment, the team used lung cancer cells and fluorescent beads about 10 micrometers in size. They recorded a fluorescent hologram in a defocused state from the focal position in the direction of depth and achieved reconstruction of both the cells and the fluorescent beads (figure 3).

The study was carried out by a multi-institution interdisciplinary collaborative research team led by Professor Hiroaki Wake (Kobe University, Graduate School of Medicine) and Professor Osamu Matoba (Kobe University, Graduate School of System Informatics) in collaboration with Professor Yasuhiro Awatsuji (Kyoto Institute of Technology, Faculty of Electrical Engineering and Electronics) and Professor Yoshio Hayasaki (Utsunomiya University, Center for Optical Research and Education).

During the verification experiment, they were able to observe light stimulation for a maximum of five cells at one time. The maximum number of stimulated cells is determined mainly because there is insufficient light power for stimulation.

In 2D (two-dimensional) space, it is expected that simultaneous light stimulation is possible for over 100 cells, and in the future, the team aims to expand the stimulation depth to a few hundred micrometers using two-photon stimulation.

In order to observe living cells, there is a limit to the power of the fluorescence to avoid damaging cells, so high-sensitivity measurements are required. The team aims to overcome these issues and prepare the new optical microscopy system for practical use.

Professor Matoba comments, "We have a research grant from JST CREST Grant Number JPMJCR1755, Japan to fabricate a SIFOM and then apply it to further development of neuroscience. We will collaborate with companies to introduce the new optical microscope into the commercial market".

Research paper


Related Links
Kobe University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Classic double-slit experiment in a new light
Cologne, Germany (SPX) Jan 21, 2019
An international research team led by physicists from Collaborative Research Centre 1238, 'Control and Dynamics of Quantum Materials' at the University of Cologne has implemented a new variant of the basic double-slit experiment using resonant inelastic X-ray scattering at the European Synchrotron ESRF in Grenoble. This new variant offers a deeper understanding of the electronic structure of solids. Writing in Science Advances, the research group have now presented their results under the title 'R ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Use a microscope as a shovel? UConn researchers dig it

Mimicking nature for programmable and adaptive synthetic materials

Scientists observe a new form of strange matter

What atoms do when liquids and gases meet

STELLAR CHEMISTRY
Reflectarray Antenna offers high performance in small package: DARPA

BAE signs $79.8M contract with Navy for Pacific comms support

Russia to Complete Military Satellite Constellation Blagovest in April

Honeywell and GetSAT win multi-million dollar deal with US Government

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Magnetic North's erratic behavior forces update to global navigation system

US Air Force contracts Lockheed Martin to continue GPS ground control supprt

GPS-denied navigation on small unmanned helicopters

China's BeiDou officially goes global

STELLAR CHEMISTRY
Lockheed nets $542M contract for F-35 equipment, spares

Bell Boeing nets $143.9M for Osprey logistics, engineering support

Never mind climate change, Davos prefers private jets

French military awards Thales contract to develop Rafale F4 sensors

STELLAR CHEMISTRY
Semiconductors combine forces in photocatalysis

Breakthrough reported in fabricating nanochips

Novel strategy enables tiny semiconductor particles for wide-ranging applications

Quantifying how much quantum information can be eavesdropped

STELLAR CHEMISTRY
Russia to launch Arctic weather satellite

Satellogic signs agreement with CGWIC to launch earth observation constellation of 90 satellites

Researchers develop new zoning tool that provides global topographic datasets in minutes

UK Space Agency COMPASS project aims to to improve crop yields for Mexican farmers

STELLAR CHEMISTRY
Brazil's Vale hit with first fine over dam disaster

S. Korea in airborne fight against 'Chinese' pollution

Microplastic contamination found in common source of groundwater, researchers report

Brazil mining giant Vale suspends dividend payments after dam burst









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.