Space Industry and Business News  
ENERGY TECH
Manganese may finally solve hydrogen fuel cells' catalyst problem
by Staff Writers
Buffalo NY (SPX) Oct 30, 2018

The image on the left shows manganese catalyst particle shape. The right images shows the uniform elemental distribution of carbon throughout the particle.R

Manganese is known for making stainless steel and aluminum soda cans. Now, researchers say the metal could advance one of the most promising sources of renewable energy: hydrogen fuel cells.

In a study published in the journal Nature Catalysis, a University at Buffalo-led research team reports on catalysts made from the widely available and inexpensive metal.

The advancement could eventually help solve hydrogen fuel cells' most frustrating problem: namely, they're not affordable because most catalysts are made with platinum, which is both rare and expensive.

"We haven't been able to advance a large-scale hydrogen economy because of this issue involving catalysts. But manganese is one of the most common elements in Earth's crust and it's widely distributed across the planet. It could finally address this problem," says lead author Gang Wu, PhD, associate professor of chemical and biological engineering in UB's School of Engineering and Applied Sciences.

Additional authors come from Oak Ridge National Laboratory, Brookhaven National Laboratory, Argonne National Laboratory, Oregon State University, University of Pittsburgh, University of South Carolina, Giner Inc. and Harbin Institute of Technology.

For more than a decade, Wu has been searching for alternative catalysts for hydrogen fuel cells. He has reported advancements in iron- and cobalt-based catalysts; however, each wears down over time, limiting their usefulness, he says.

In previous work, Wu discovered that adding nitrogen to manganese causes internal changes to the metal that makes it a more stable element. In experiments reported in the study, he devised a relatively simple two-step method of adding carbon and a form of nitrogen called tetranitrogen to manganese.

The result was a catalyst that's comparable in its ability to split water - the reaction needed to produce hydrogen - as platinum and other metal-based alternatives. More importantly, the stability of the catalyst makes it potentially suitable for hydrogen fuel cells. This could lead to wide-scale adoption of the technology in buses, cars and other modes of transportation, as well as backup generators and other sources of power.

Wu plans to continue the research, focusing on improving the catalyst's carbon microstructure and the method in which nitrogen is added. The goal, he says, is to further enhance the catalyst's performance in practical hydrogen fuel cells.

Research paper


Related Links
University at Buffalo
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Scientists unravel the mysteries of polymer strands in fuel cells
Washington DC (SPX) Oct 25, 2018
Hydrogen fuel cells offer an attractive source of continuous energy for remote applications, from spacecraft to remote weather stations. Fuel cell efficiency decreases as the Nafion membrane, used to separate the anode and cathode within a fuel cell, swells as it interacts with water. A Russian and Australian collaboration has now shown that this Nafion separator membrane partially unwinds some of its constituent fibers, which then protrude away from the surface into the bulk water phase for hundr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Memory-steel makes for new material to strengthen buildings

New composite material that can cool itself down under extreme temperatures

Novel material could make plastic manufacturing more energy-efficient

Origami, 3D printing merge to make complex structures in one shot

ENERGY TECH
Navistar contracted by Army for MRAP tech support

Scientists want to blast holes in clouds with laser to boost satellite communication

Military communications satellite online in orbit following launch

Aerojet Rocketdyne powers 4th AEHF-4 to orbital position

ENERGY TECH
ENERGY TECH
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

ENERGY TECH
Cathay Pacific hit by data leak affecting 9.4m passengers

A Chinese farmer couldn't fly a plane, so he built one

Indonesia $200m in arrears on fighter project: S. Korea

Dandelion seeds reveal newly discovered form of natural flight

ENERGY TECH
Inexpensive chip-based device may transform spectrometry

Announcing the discovery of an atomic electronic simulator

Shielded quantum bits

Printed 3D supercapacitor electrode breaks records in lab tests

ENERGY TECH
Researchers develop an operative complex scheme for short-range weather forecasts

Zooming in on Mexico's landscape

Government of Canada to invest $7.2M in exactEarth

Earth observation data market to reach $2.4B

ENERGY TECH
Indian court eases firecracker ban even as pollution soars

Uber plans pollution levy on London fares

Delhi holds breath as burning farms herald pollution season

Study: Air pollution deaths in U.S. dropped by half between 1990, 2010









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.