Subscribe free to our newsletters via your
. Space Industry and Business News .




CARBON WORLDS
Making Nanodiamonds In Ambient Conditions
by Staff Writers
Cleveland OH (SPX) Oct 23, 2013


(Clockwise) Microplasma dissociates ethanol vapor, carbon particles are collected and dispersed in solution, and electron microscope image reveals nanosized diamond particles. Credit: Case Western Reserve University.

Instead of having to use tons of crushing force and volcanic heat to forge diamonds, researchers at Case Western Reserve University have developed a way to cheaply make nanodiamonds on a lab bench at atmospheric pressure and near room temperature.

The nanodiamonds are formed directly from a gas and require no surface to grow on.

The discovery holds promise for many uses in technology and industry, such as coating plastics with ultrafine diamond powder and making flexible electronics, implants, drug-delivery devices and more products that take advantage of diamond's exceptional properties.

Their investigation is published today in the scientific journal Nature Communications. The findings build on a tradition of diamond research at Case Western Reserve.

Beyond its applications, the discovery may offer some insight into our universe: an explanation of how nanodiamonds seen in space and found in meteorites may be formed.

"This is not a complex process: ethanol vapor at room temperature and pressure is converted to diamond," said Mohan Sankaran, associate professor of chemical engineering at Case Western Reserve and leader of the project. "We flow the gas through a plasma, add hydrogen and out come diamond nanoparticles. We can put this together and make them in almost any lab."

The process for making these small "forever stones" won't melt plastic so it is well suited for certain high-tech applications. Diamond, renowned for being hard, has excellent optical properties and the highest velocity of sound and thermal conductivity of any material.

Unlike the other form of carbon, graphite, diamond is a semiconductor, similar to silicon, which is the dominant material in the electronics industry, and gallium arsenide, which is used in lasers and other optical devices.

While the process is simple, finding the right concentrations and flows-what the researchers call the "sweet spot"-took time.

The other researchers involved were postdoctoral researcher Ajay Kumar, PhD student Pin Ann Lin, and undergraduate student Albert Xue, of Case Western Reserve; and physics professor Yoke Khin Yap and graduate student Boyi Hao, of Michigan Technical University.

Sankaran and John Angus, professor emeritus of chemical engineering, came up with the idea of growing nanodiamonds with no heat or pressure about eight years ago. Angus' research in the 1960s and 1970s led him and others to devise a way to grow diamond films at low pressure and high temperature, a process known as chemical vapor deposition that is now used to make coatings on computer disks and razor blades. Sankaran's specialty, meanwhile, is making nanoparticles using cool microplasmas.

It usually requires high pressures and high temperatures to convert graphite to diamond or a combination of hydrogen gas and a heated substrate to grow diamond rather than graphite.

"But at the nanoscale, surface energy makes diamond more stable than graphite," Sankaran explained. "We thought if we could nucleate carbon clusters in the gas phase that were less than 5 nanometers, they would be diamond instead of graphite even at normal pressure and temperature."

After several ups and downs with the effort, the process came together when Kumar joined Sankaran's lab. The engineers produced diamond much like they'd produce carbon soot.

They first create a plasma, which is a state of matter similar to a gas but a portion is becoming charged, or ionized. A spark is an example of a plasma, but it's hot and uncontrollable.

To get to cooler and safer temperatures, they ionized argon gas as it was pumped out of a tube a hair-width in diameter, creating a microplasma. They pumped ethanol-the source of carbon-through the microplasma, where, similar to burning a fuel, carbon breaks free from other molecules in the gas, and yields particles of 2 to 3 nanometers, small enough that they turn into diamond.

In less than a microsecond, they add hydrogen. The element removes carbon that hasn't turned to diamond while simultaneously stabilizing the diamond particle surface.

The diamond formed is not the large perfect crystals used to make jewelry, but is a powder of diamond particles. Sankaran and Kumar are now consistently making high-quality diamonds averaging 2 nanometers in diameter.

The researchers spent about a year of testing to verify they were producing diamonds and that the process could be replicated, Kumar said. The team did different tests themselves and brought in Yap's lab to analyze the nanoparticles by Raman spectroscopy.

Currently, nanodiamonds are made by detonating an explosive in a reactor vessel to provide heat and pressure. The diamond particles must then be removed and purified from contaminating elements massed around them. The process is quick and cheap but the nanodiamonds aggregate and are of varying size and purity.

The new research offers promising implications. Nanodiamonds, for instance, are being tested to carry drugs to tumors. Because diamond is not recognized as an invader by the immune system, it does not evoke resistance, the main reason why chemotherapy fails.

Sankaran said his nanodiamonds may offer an alternative to diamonds made by detonation methods because they are purer and smaller.

The group's process produces three kinds of diamonds: about half are cubic, the same structure as gem diamonds, a small percentage are a form suspected of having hydrogen trapped inside and about half are lonsdaleite, a hexagonal form found in interstellar dust but rarely found on Earth.

A recent paper in the journal Physical Review Letters suggests that when interstellar dust collides, such high pressure is involved that the graphitic carbon turns into londsdaleite nanodiamonds.

Sankaran and Kumar contend that an alternative with no high pressure requirement, such as their method, should be considered, too.

"Maybe we're making diamond in the way diamond is sometimes made in outer space," Sankaran proposed. "Ethanol and plasmas exist in outer space, and our nanodiamonds are similar in size and structure to those found in space."

The group is now investigating whether it can fine-tune the process to control which form of diamond is made, analyzing the structures and determining if each has different properties. Lonsdaleite, for instance, is harder than cubic diamond.

The researchers have made a kind of nanodiamond spray paint. "We can do this in a single step, by spraying the nanodiamonds as they are produced out of the plasma and purified with hydrogen, to coat a surface," Kumar said.

And they are working on scaling up the process for industrial use.

"Will they be able to scale up? That's always a crap shoot," Angus said. "But I think it can be done, and at very high rates and cheaply. Ultimately, it may take some years to get there, but there is no theoretical reason it can't be done."

If the scaled-up process is as simple and cheap as the lab process, industry will find many applications for the product, Sankaran said.

.


Related Links
Case Western Reserve University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CARBON WORLDS
An optical switch based on a single nano-diamond
Barcelona, Spain (SPX) Oct 18, 2013
A recent study led by researchers of the ICFO (Institute of Photonic Sciences) demonstrates that a single nano-diamond can be operated as an ultrafast single-emitter optical switch operating at room temperature. The scientific results of this study have been published in Nature Physics. Electronic transistors have become a key component to modern electronics, drastically improving the spee ... read more


CARBON WORLDS
NSF Awards $12 Million to SDSC to Deploy "Comet" Supercomputer

Rice scientists create a super antioxidant

Cracked metal, heal thyself

'Walking droplets'

CARBON WORLDS
Lockheed Martin To Continue In Theater Support for Real-Time Surveillance

Lockheed Martin to Deliver Communications and Transmission Services to US Army

Raytheon demonstrates new protected tactical waveform on a small, lightweight, low-cost modem

Northrop Grumman Delivers First Tactical IBCS Components

CARBON WORLDS
Astrium awarded three new contracts by ESA for Ariane 6 and Ariane 5 ME launchers

Sounding Rocket Calibrates NASA's SDO Instrument

Russia Readies Proton Rocket for October 20 Launch

Sunshield preparations bring Gaia closer to deep-space Soyuz launch

CARBON WORLDS
Software Uses Cyborg Swarm To Map Unknown Environs

DLR, Thales Alenia Space and SES Develop Innovative Space-Based Air Traffic Control Monitoring System

Boeing, China Southern and China Aviation Authorities Establish Precision Navigation Procedures

Plan maps development of China's sat-nav industry

CARBON WORLDS
EU revives airline carbon tax proposal

In Israel, lingering bitterness over a failed fighter project

Brazil aims to build advanced fighter jets with Russia

Northrop Grumman to Upgrade French Navy E-2C Hawkeye Fleet

CARBON WORLDS
Size matters in the giant magnetoresistance effect in semiconductors

CU, MIT breakthrough in photonics could allow for faster and faster electronics

Researchers demonstrate 'accelerator on a chip'

Spirals of Light May Lead to Better Electronics

CARBON WORLDS
Satellites proposed as way to bring early detection of wildfires

CASIS Issues Request for Proposals: Remote Sensing From the ISS

Nation puts geospatial data system on the map

Indra Leads The European G-Sextant Earth Observation Project

CARBON WORLDS
Russian court brands Baikal protection group 'foreign agent'

Outdoor air pollution a leading cause of cancer

'Toxic bomb' ticks on Maldives rubbish island

Pulp friction cleans up 'Brockovich' chemical




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement