Space Industry and Business News  
Making Gas Out Of Crude Oil

Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly.
by Staff Writers
Calgary, Canada (SPX) Dec 13, 2007
An international team that includes University of Calgary scientists has shown how crude oil in oil deposits around the world - including in Alberta's oil sands - are naturally broken down by microbes in the reservoir. Their discovery - published in the prestigious science journal Nature - could revolutionize heavy oil and oil sands production by leading to more energy-efficient, environmentally friendly ways to produce this valuable resource.

Understanding how crude oil biodegrades into methane, or natural gas, opens the door to being able to recover the clean-burning methane directly from deeply buried, or in situ, oil sands deposits, says Steve Larter, U of C petroleum geologist in the Department of Geoscience who headed the Calgary contingent of the research team.

The oil sands industry would no longer have to use costly and polluting thermal, or heat-based, processes (such as injecting steam into reservoirs) to loosen the tar-like bitumen so it flows into wells and can be pumped to the surface.

"The main thing is you'd be recovering a much cleaner fuel," says Larter, Canada Research Chair in Petroleum Geology. "Methane is, per energy unit, a much lower carbon dioxide emitter than bitumen. Also, you wouldn't need all the upgrading facilities and piping on the surface."

Biodegradation of crude oil into heavy oil in petroleum reservoirs is a problem worldwide for the petroleum industry. The natural process, caused by bacteria that consume the oil, makes the oil viscous, or thick, and contaminates it with pollutants such as sulphur. This makes recovering and refining heavy oil difficult and costly.

Some studies have suggested that biodegradation could by caused by aerobic bacteria, which use oxygen. But Larter and colleagues from the U of C, University of Newcastle in the U.K., and Norsk Hydro Oil and Energy in Norway, report in Nature that the dominant process is, in fact, fermentation. It is caused by anaerobic bacteria that live in oil reservoirs and don't use oxygen.

"This is the main process that's occurring all over the Earth, in any oil reservoir where you've got biodegradation," Larter says.

Using a combination of microbiological studies, laboratory experiments and oilfield case studies, the team demonstrated the anaerobic degradation of hydrocarbons to produce methane. The findings offer the potential of 'feeding' the microbes and rapidly accelerating the breaking down of the oil into methane.

"Instead of 10 million years, we want to do it 10 years," Larter says. "We think it's possible. We can do it in the laboratory. The question is: can we do it in a reservoir""

Doing so would revolutionize the heavy oil/oil sands industry, which now manages to recover only about 17 per cent of a resource that consists of six trillion barrels worldwide. Oil sands companies would be able to recover only the clean-burning natural gas, leaving the hard-to-handle bitumen and contaminants deep underground.

Understanding biodegradation also provides an immediate tool for predicting where the less-biodegraded oil is located in reservoirs, enabling companies to increase recovery by targeting higher-quality oil. "It gives us a better understanding of why the fluid properties are varying within the reservoir," Larter says. "That will help us with thermal recovery processes such as SAGD (steam-assisted gravity drainage)."

The research team also discovered an intermediate step in the biodegradation process. It involves a separate family of microbes that produce carbon dioxide and hydrogen from partly degraded oil, prior to it being turned into methane. This paves the way for using the microbes to capture this CO2 as methane, which could then be recycled as fuel in a closed-loop energy system. This would keep the CO2, a greenhouse gas blamed for global warming and climate change, out of the atmosphere.

The petroleum industry already has expressed interest in trying to accelerate biodegradation in a reservoir, Larter says. "It is likely there will be field tests by 2009."

Related Links
http://www.ucalgary.ca/University of Calgary
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Darfur rebels say they attacked Chinese-run oilfield in Sudan
Khartoum (AFP) Dec 11, 2007
Darfur rebel group the Justice and Equality Movement (JEM) said on Tuesday it had attacked and taken over a Chinese-run oilfield in central Sudan.







  • EU nations endorse standard system for mobile TV
  • Beyond Books: Virginia Tech Libraries In The Digital Age
  • Bee Strategy Helps Servers Run More Sweetly
  • Electricity Grid Could Become A Type Of Internet

  • Russia Tests Engine For Angara Carrier Rocket
  • United Launch Alliance Launches 2nd COSMO Satellite
  • ATK Receives Contract And Delivers 100th Orion Solid Rocket Motor
  • Arianespace warns US over Chinese space 'dumping'

  • California urges regulation on aircraft emissions
  • Announcement Of Opportunity For Sounding Rocket And Balloon Flights
  • China to order up to 150 Airbus jets during Sarkozy visit: report
  • Time Magazine Recognizes The X-48B

  • Northrop Grumman Develops World's Fastest Transistor To Support Military's Need For Higher Frequency And Bandwidth
  • Russia launches military satellite: agencies
  • Harris Tests New Falcon III Multiband Manpack Radio During US Army Patriot Missile Exercise
  • SKorea develops military communication system: officials

  • Russia And France Developing New Satellite Platform
  • Light Is Shed On New Fibre's Potential To Change Technology
  • Major Physics Breakthrough In Understanding Supersolidity
  • MIT Creates New Oil-Repelling Material

  • Iridium Satellite Appoints Leader For NEXT Development
  • Boeing Names Darryl Davis To Lead Advanced Systems For Integrated Defense Systems
  • Northrop Grumman Names John Landon VP Of Missiles, Technology And Space Programs
  • Dr Mary Cleave Appointed To Board Of Directors Of Sigma Space

  • Outside View: Russia's new sats -- Part 2
  • Use Space Technology And IT For Rural Development
  • China, Brazil give Africa free satellite land images
  • Ministerial Summit On Global Earth Observation System Of Systems

  • Boeing Selected To Help Develop New USAF GPS Ground System
  • Swedish Space Takes Major Role In Galileo Satellite Navigation Project
  • EU rallies Spain to clinch unanimous Galileo deal
  • EU nations 'close' to political agreement on satnav project

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement