Space Industry and Business News  
CHIP TECH
Magnetic vortices come full circle
by Staff Writers
Villigen, Switzerland (SPX) Dec 01, 2020

The first experimental observation of three-dimensional magnetic 'vortex rings' provides fundamental insight into intricate nanoscale structures inside bulk magnets, and offers fresh perspectives for magnetic devices.

Magnets often harbour hidden beauty. Take a simple fridge magnet: Somewhat counterintuitively, it is 'sticky' on one side but not the other. The secret lies in the way the magnetisation is arranged in a well-defined pattern within the material.

More intricate magnetization textures are at the heart of many modern technologies, such as hard disk drives. Now, an international team of scientists at the Paul Scherrer Institute PSI, ETH Zurich, the University of Cambridge, the Donetsk Institute for Physics and Engineering and the Institute for Numerical Mathematics RAS in Moscow report the discovery of unexpected magnetic structures inside a tiny pillar made of the magnetic material gadolinium cobalt.

As they write in a paper published in the journal Nature Physics, the researchers observed sub-micrometre loop-shaped configurations, which they identified as magnetic vortex rings. Far beyond their aesthetic appeal, these textures might point the way to further complex three-dimensional structures arising in the bulk of magnets, and could one day form the basis for novel technological applications.

Mesmerising insights
Determining the magnetisation arrangement within a magnet is extraordinarily challenging, in particular for structures at the micro- and nanoscale, for which studies have been typically limited to looking at a shallow layer just below the surface. That changed in 2017 when researchers at PSI and ETH Zurich introduced a novel X-ray method for the nanotomography of bulk magnets, which they demonstrated in experiments at the Swiss Light Source SLS. That advance opened up a unique window into the inner life of magnets, providing a tool for determining three-dimensional magnetic configurations at the nanoscale within micrometre-sized samples.

Utilizing these capabilities, members of the original team, together with international collaborators, now ventured into new territory. The stunning loop shapes they observed appear in the same gadolinium cobalt micropillar samples in which they had before detected complex magnetic configurations consisting of vortices - the sort of structures seen when water spirals down from a sink - and their topological counterparts, antivortices.

That was a first, but the presence of these textures has not been surprising in itself. Unexpectedly, however, the scientists also found loops that consist of pairs of vortices and antivortices. That observation proved to be puzzling initially. With the implementation of novel sophisticated data-analysis techniques they eventually established that these structures are so-called vortex rings - in essence, doughnut-shaped vortices.

A new twist on an old story
Vortex rings are familiar to everyone who has seen smoke rings being blown, or who watched dolphins producing loop-shaped air bubbles, for their own amusement as much as to that of their audience.

The newly discovered magnetic vortex rings are captivating in their own right. Not only does their observation verify predictions made some two decades ago, settling the question whether such structures can exist. They also offered surprises. In particular, magnetic vortex rings have been predicted to be a transient phenomenon, but in the experiments now reported, these structures turned out to be remarkably stable.

The stability of magnetic vortex rings should have important practical implications. For one, they could potentially move through magnetic materials, as smoke rings move stably though air, or air-bubble rings through water.

Learning how to control the rings within the volume of the magnet can open interesting prospects for energy-efficient 3D data storage and processing. There is interest in the physics of these new structures, too, as magnetic vortex rings can take forms not possible for their smoke and bubble counterparts. The team has already observed some unique configurations, and going forward, their further exploration promises to bring to light yet more magnetic beauty.

Research paper


Related Links
Paul Scherrer Institute
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


CHIP TECH
Spintronics advances controlling magnetization direction of magnetite at room temperature
Tokyo, Japan (SPX) Nov 18, 2020
Over the last few decades, conventional electronics has been rapidly reaching its technical limits in computing and information technology, calling for innovative devices that go beyond the mere manipulation of electron current. In this regard, spintronics, the study of devices that exploit the "spin" of electrons to perform functions, is one of the hottest areas in applied physics. But, measuring, altering, and, in general, working with this fundamental quantum property is no mean feat. Current s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Cracking the secrets of an emerging branch of physics

Video games are 'under-regulated': EU anti-terror czar

Using fabric to "listen" to space dust

Astroscale announces March 2021 Launch Date for Debris Removal Demonstration

CHIP TECH
Elbit Systems launches E-LynX-Sat - a portable tactical SATCOM system

NXTCOMM Defense Division formed to support military communications imperative

Launch of next 3 Russian Gonets-M satellites scheduled on Nov 24

US Military, Industry Discuss Improving High-Tech Battlefield Communication

CHIP TECH
CHIP TECH
BDS-3 gains major breakthrough in civil aviation sector

Swift Navigation's improves accuracy of single-frequency GNSS receivers

China's BDS-3 improves timing service

Fourth Lockheed Martin-Built GPS III Satellite's On Board Engine Now Propelling It To Orbit

CHIP TECH
Fantasy to Reality: NASA Pushes Electric Flight Envelope

June crash of F-15C attributed to pilot's spatial disorientation

China maintains ban on Boeing 737 MAX flights

Five countries to collaborate on NATO's next helicopters

CHIP TECH
Spintronics advances controlling magnetization direction of magnetite at room temperature

Telling when a nanolithography mold will break through droplets

Sticky electrons: When repulsion turns into attraction

Tiny device enables new record in super-fast quantum light detection

CHIP TECH
Space Flight Laboratory to supply 3 more greenhouse gas monitoring microsatellites

US-European mission launches to monitor the world's oceans

20 Years of Observing Earth from the International Space Station

Airbus wins ESA's LSTM temperature-check mission for Copernicus next generation

CHIP TECH
China to end all waste imports on Jan 1

Inquest to probe role of air pollution in death of British girl

France to punish 'eco-cide' with prison up to 10 years

Covid and pollution: intimately linked, compound threat









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.