Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Magnetic switch gets closer to application
by Staff Writers
Berlin, Germany (SPX) Jan 29, 2014


File image.

Scientists from Paris, Newcastle and Helmholtz-Zentrum Berlin have been able to switch on and off robust ferromagnetism close to room temperature by using low electric fields. Their results are inspiring for future applications in low-power spintronics, for instance in fast, efficient and nonvolatile data storage technologies.

The sample consisted of a ferroelectric BaTiO3 substrate covered with a thin film of magnetic FeRh. Experiments at BESSY II combined with other measurement methods demonstrated how the magnetic order of the sample changes dramatically, when a moderate external electric field is applied: The electric field induces strain in the crystal structure of the ferroelectric substrate, which is transferred to the thin FeRh-film and switches its magnetic ordering from ferromagnetic (large magnetization) to antiferromagnetic (zero magnetization).

The effect is ten times larger than previously observed in other magnetic structures and especially promising since it is found close to room temperature. The results have been published online on 26 January in Nature Materials, DOI: 10.1038/NMAT3870.

The ability to turn on and off robust ferromagnetism at room temperature and low electric fields has remained elusive until now. Nevertheless, such magnetic switches would be extremely useful for spintronic devices and future data storage technologies.

Now a materials system has been grown by scientists at Unite Mixte de Physique CNRS/Thales and Universite Paris Sud which has interesting properties. As measurements of Sergio Valencia, Akin Unal and Florian Kronast from HZB demonstrated, their magnetization can be controlled by means of electric fields. The change achieved in the magnetization with moderate electric field is one magnitude higher than observed previously in any other materials.

The new structure consists of a ferroelectric BaTiO3 crystal substrate, covered with a thin film of magnetic FeRh. To obtain microscopic information about the magnetic order, the HZB team took high-resolution magnetic images at the spin-resolved photo-emission electron microscope at BESSY II at different voltages at a temperature of 385 K or 112 Celsius.

"We have found that in FeRh/BaTiO3 even a moderate electric field can produce a giant magnetization variation, arising from the electric-field-induced transformation of the FeRh from an ferromagnetic state to an antiferromagnetic state", Valencia says.

The detailed analysis of the data in the light of first-principles calculations indicate that the phenomenon is mediated by both strain and field effects from the BaTiO3. The results correspond to a magnetoelectric coupling larger than previous reports by at least one order of magnitude. The possibility of toggling between magnetic states by means of an electric field and at very low power offers an attractive alternative to heat-assisted magnetic recording.

This technology uses a laser pulse to heat a magnetic bit above a certain temperature at which the magnetic field generated by the write-head can reliably switch the magnetization direction. "On a broader perspective, our work emphasizes the relevance of hybrid perovskite/metal systems such as BaTiO3/FeRh for low-power spintronic architectures.

In the future, it would be attractive to combine FeRh with piezoelectric elements with giant responses. The effect could be further increased and tuned to a range of operating temperatures, including room temperature, by using Palladium-substituted FeRh", Valencia points out.

.


Related Links
Helmholtz-Zentrum Berlin
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Spider silk ties scientists up in knots
Madrid, Spain (SPX) Jan 23, 2014
Two years ago, researchers from Iowa State University (USA) published a study which concluded that spider silk conducts heat as well as metals. Now, a team from the University of the Basque Country (Spain) has repeated the experiment and the results throw this discovery into question. This has reaffirmed the need to validate scientific findings before proclaiming their validity in the press. ... read more


TECH SPACE
Swiss cheese crystal, or high-tech sponge?

NGC Completes Critical Design Review For James Webb Space Telescope

Liquid Crystal Turns Water Droplets Into 'Gemstones'

Spider silk ties scientists up in knots

TECH SPACE
US Navy Accepts General Dynamics-built MUOS Ground Stations

GA-ASI and Northrop Showcase Unmanned Electronic Attack Capabilities

Space squadron optimizes wideband communication constellations

Boeing Transmits Protected Government Signal Through Military Satellite

TECH SPACE
45th Space Wing Supports NASA Launch

Athena-Fidus receives its "kick" for Arianespace's upcoming Ariane 5 launch

ILS Proton To Launch Yamal 601

Turkish Telecoms Satellite to Launch From Baikonur Feb. 15

TECH SPACE
Lockheed Martin Powers On Second GPS 3 Satellite In Production

India to launch three navigation satellites this year

NGC Wins Contract For GPS-Challenged Navigation and Geo-Registration Solution

20th Anniversary of Initial Operational Capability of the GPS Constellation

TECH SPACE
Red Arrows pilot killed by 'useless' seat mechanism

Swiss to vote in May on fighter deal

Boeing profits surge but tougher 2014 awaits

S. Korea to finalise F-35 jet fighter deal this year

TECH SPACE
New quantum dots herald a new era of electronics operating on a single-atom level

Dutch hi-tech group ASML profits dip despite record sales

2-proton bit controlled by a single copper atom

New Technique for Probing Subsurface Electronic Structure

TECH SPACE
Russian EVA re-attempting installation of Earth-observing cameras

Chinese scientists pinpoint source of Yangtze's main tributary

China to promote geological information industry

NASA Set For A Big Year In Earth Science With Five New Missions

TECH SPACE
Delhi says air 'not as bad' as Beijing after smog scrutiny

India's Essar sues Greenpeace for $80 mn for defamation

Made in China for us: Air pollution tied to exports

Integrating vegetation into sustainable transportation planning may benefit public health




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement