Space Industry and Business News  
STELLAR CHEMISTRY
Magnetic hide and seek
by Staff Writers
Santa Barbara CA (SPX) Oct 23, 2015


This image shows Jim Fuller, Matteo Cantiello and Lars Bildsten. Image courtesy Bill Wolf. For a larger version of this image please go here.

For the first time, astrophysicists are able to determine the presence of strong magnetic fields deep inside pulsating giant stars. Magnetic fields have important consequences in all stages of stellar evolution, from a star's formation to its demise.

A consortium of international researchers, including several from UC Santa Barbara's Kavli Institute for Theoretical Physics (KITP), used asteroseismology - a discipline similar to seismology - to track waves traveling through stars in order to determine their inner properties. Their findings appear in the journal Science.

"We can now probe regions of the star that were previously hidden," said co-lead author Matteo Cantiello, a specialist in stellar astrophysics at KITP. "The technique is analogous to a medical ultrasound, which uses sound waves to image otherwise invisible parts of the human body."

Cantiello's curiosity and that of his co-authors was sparked when astrophysicist Dennis Stello of the University of Sydney presented puzzling data from the Kepler satellite, a space telescope that measures stellar brightness variations with very high precision. Cantiello, KITP director Lars Bildsten and Jim Fuller, a postdoctoral fellow at the California Institute of Technology, agreed that this was a mystery worth solving.

After much debate, many calculations and the additional involvement of Rafael Garcia, a staff scientist at France's Commissariat a l'Energie Atomique, a solution emerged. The data were explained by the presence of strong magnetic fields in the inner regions of these stars.

The puzzling phenomenon was observed in a group of red giants imaged by Kepler. Red giants are stars much older and larger than the sun. Their outer regions are characterized by turbulent motion that excites sound waves, which interact with gravity waves that travel deep into the stellar core. Magnetic fields in the core can hinder the motions produced by the gravity waves.

"Imagine the magnetic field as stiff rubber bands embedded in the stellar gas, which affect the propagation of gravity waves," Fuller explained. "If the magnetic field is strong enough, the gravity waves become trapped in the star's core. We call this the magnetic greenhouse effect."

The trapping occurs because the incoming wave is reflected by the magnetic field into waves with a lower degree of symmetry, which are prevented from escaping the core. As a result, stellar surface oscillations have smaller amplitude compared to a similar star without a strong magnetic field.

"We used these observations to put a limit on - or even measure - the internal magnetic fields for these stars," Cantiello said. "We found that red giants can possess internal magnetic fields nearly a million times stronger than a typical refrigerator magnet.

"This is exciting as internal magnetic fields play an important role both for the evolution of stars and for the properties of their remnants," Cantiello added. "For example, some of the most powerful explosions in the universe - long gamma-ray bursts - are associated with the death of some huge stars. These behemoths - 10 or more times more massive than our sun - most likely ended their lives with strong magnetic fields in their cores."

This work was written collaboratively on the web. A public, open Science version of the published paper can be found on Authorea, including a layman's summary.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Barbara
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Final kiss of 2 stars heading for catastrophe
Munich, Germany (SPX) Oct 22, 2015
Using ESO's Very Large Telescope, an international team of astronomers have found the hottest and most massive double star with components so close that they touch each other. The two stars in the extreme system VFTS 352 could be heading for a dramatic end, during which the two stars either coalesce to create a single giant star, or form a binary black hole. The double star system VFTS 352 ... read more


STELLAR CHEMISTRY
U.S. Air Force long-range radar systems reach full operational capability

A 'hot' new development for ultracold magnetic sensors

Mother-of-pearl's genesis identified in mineral's transformation

Exciting breakthrough in 2-D lasers

STELLAR CHEMISTRY
Southeast Asian nation awards Harris $10 million contract for radios

Harris delivering tactical radios to multiple customers

LGS Innovations enhances ISR technologies

Harris supplying tactical radios to Special Operations Forces

STELLAR CHEMISTRY
ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

STELLAR CHEMISTRY
Russian-Chinese Sat NavSystem to Launch on Silk Road, EEU Markets

ISRO looking to extend GPS services to SAARC countries

Last of the dozen GPS IIF satellites arrive at CCAFS for processing

Glonass system can fully switch to domestic electronics in 2 years

STELLAR CHEMISTRY
Boeing opens advanced research facility

Australia banners industry work on F-35

Belarus to buy new Russian Su-30SM fighter jets after 2020

Dayton U.S. Air Force unit handles major sales

STELLAR CHEMISTRY
Electronics get a power boost with the addition of a simple material

Light goes infinitely fast with new on-chip material

Chemical microdroplet computers are easier to teach than to design

EU clears chipmaker Intel's $16.7 bn buyout of Altera

STELLAR CHEMISTRY
Daily Views of Earth Available on New NASA Website

Sentinel-3A shows off

China reports less pollution from burning straw

NASA Eyes on Earth Aid Response to Carolina Flooding

STELLAR CHEMISTRY
India's capital holds first 'car-free day' to combat filthy air

The shape of a pipe dramatically affects how pollutants will spread

Morocco trash pickers help fight climate change

Belgian urban vacuum cleaner takes on world's litter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.