Space Industry and Business News  
TECH SPACE
Magnetic field milestone
by Staff Writers
Tokyo, Japan (SPX) Oct 01, 2018

Sparks fly at the moment of activation. Four million amps of current feed the megagauss generator system, hundreds of times the current of a typical lightning bolt.

Physicists from the Institute for Solid State Physics at the University of Tokyo have generated the strongest controllable magnetic field ever produced. The field was sustained for longer than any previous field of a similar strength. This research could lead to powerful investigative tools for material scientists and may have applications in fusion power generation.

Magnetic fields are everywhere. From particle smashers to the humble compass, our capacity to understand and control these fields crafted much of the modern world. The ability to create stronger fields advances many areas of science and engineering. UTokyo physicist Shojiro Takeyama and his team created a large sophisticated device in a purpose-built lab, capable of producing the strongest controllable magnetic field ever using a method known as electromagnetic flux compression.

"Decades of work, dozens of iterations and a long line of researchers who came before me all contributed towards our achievement," said Professor Takeyama. "I felt humbled when I was personally congratulated by directors of magnetic field research institutions around the world."

But what is so interesting about this particular magnetic field?

At 1,200 teslas - not the brand of electric cars, but the unit of magnetic field strength - the generated field dwarfs almost any artificial magnetic field ever recorded; however, it's not the strongest overall. In 2001, physicists in Russia produced a field of 2,800 teslas, but their explosive method literally blew up their equipment and the uncontrollable field could not be tamed. Lasers can also create powerful magnetic fields, but in experiments they only last a matter of nanoseconds.

The magnetic field created by Takeyama's team lasts thousands of times longer, around 100 microseconds, about one-thousandth of the time it takes to blink. It's possible to create longer-lasting fields, but these are only in the region of hundreds of teslas. The goal to surpass 1,000 teslas was not just a race for the sake of it, that figure represents a significant milestone.

"With magnetic fields above 1,000 Teslas, you open up some interesting possibilities," says Takeyama. "You can observe the motion of electrons outside the material environments they are normally within. So we can study them in a whole new light and explore new kinds of electronic devices. This research could also be useful to those working on fusion power generation."

This is an important point, as many believe fusion power is the most promising way to provide clean energy for future generations. "One way to produce fusion power is to confine plasma - a sea of charged particles - in a large ring called a tokamak in order to extract energy from it," explains Takeyama. "This requires a strong magnetic field in the order of thousands of teslas for a duration of several microseconds. This is tantalizingly similar to what our device can produce."

Research Report: "Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression"


Related Links
University of Tokyo
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Researchers develop magnetic cooling cycle
Dresden, Germany (SPX) Sep 21, 2018
As a result of climate change, population growth, and rising expectations regarding quality of life, energy requirements for cooling processes are growing much faster worldwide than for heating. Another problem that besets today's refrigeration systems is that most coolants cause environmental and health damage. A novel technology could provide a solution: refrigeration using magnetic materials in magnetic fields. Researchers at the Technische Universitat (TU) Darmstadt and the Helmholtz-Zentrum D ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Plasma thruster: New space debris removal technology

Researchers develop magnetic cooling cycle

Commercially relevant bismuth-based thin film processing

Chemists functionalize boron nitride with other nano systems

TECH SPACE
Airbus tests 4G 5G stratospheric balloons for defence comms

Multi-domain command and control is coming

Lockheed Martin embraces agile software development to evolve signals intelligence capabilities

Lockheed Martin Introduces Mission Planning System That Connects Systems and Assets Across Domains

TECH SPACE
TECH SPACE
New Study Tracks Hurricane Harvey Stormwater with GPS

China launches twin BeiDou-3 satellites

First satellite for GPS III upgrades to launch in December

AF Announces selection of GPS III follow-on contract

TECH SPACE
US F-35 fighters fly first ever combat mission; F-35 crashes for the first time

Army contracts Sikorsky for UH-60 Blackhawk transmissions

Harris contracted for B-52, C-130 parts for U.S. Special Ops Forces

Sikorsky nears completion on HH-60W helicopter trainers

TECH SPACE
Qualcomm alleges Apple gave swiped chip secrets to Intel

A new way to count qubits

Smaller, faster and more efficient modulator sets to revolutionize optoelectronic industry

DARPA contracts USC for circuit development program

TECH SPACE
How Earth sheds heat into space

New airborne campaigns to explore snowstorms, river deltas, climate

Three Earth Explorer ideas selected

Scientists locate parent lightning strokes of sprites

TECH SPACE
Gangsters, militants exploit environment for cash

NASA Study Untangles Smoke, Pollution Effects on Clouds

Coca-Cola, Walmart to cut plastic pollution in oceans

Nappy change: Dutch to turn diapers into furniture









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.