Space Industry and Business News  
TECH SPACE
Liquid spiral vortex discovered
by Staff Writers
Onna, Japan (SPX) Apr 26, 2016


The development of the spiral vortex increases with flow rate. Image courtesy OIST. Watch a video on the research here.

In many plumbing and pipework systems in general, there are junctions and connections to move liquids such as water in different directions, but have you ever thought about what happens to the water in those fluid intersections? A team of researchers from Okinawa Institute of Science and Technology Graduate University (OIST) and collaborators found an unexpected spiral vortex phenomenon that occurs in the intersections of cross-shaped devices when liquid flows through the channels in a particular way. The team has published their results in Physical Review E.

The team moved water through a cross-shaped device, or geometry, by simultaneously pumping water into two channels facing each other, so that they met at an intersection. When the two streams of water meet at the intersection they are compressed by the force of the flow and then extended by being pulled out through the remaining two pathways, creating a spiral vortex in the water.

"On the surface it is a really simple geometry," Prof. Amy Shen of OIST's Micro/Bio/Nanofluidics Unit and author said. "But no one has ever captured or visualized such striking flow structures like this before."

The researchers could visualize this by inserting fluorescent dye into the water that entered from one of the two pathways. Also, the team was able to perform numerical simulations that can predict the spiral vortex phenomenon computationally. When the flow starts up, the spiral can form spinning either clockwise or counter clockwise with equal probability. Through the combinations of the experiments and with the numerical simulations the scientists were able to classify this behaviour as an unusual kind of flow instability.

"We are starting to think that this kind of instability would exist in any kind of intersecting geometry," Dr. Simon Haward, first author and group leader of OIST's Micro/Bio/Nanofluidics unit said.

The team discovered that spirals appear as the flow rate is increased and disappear again if the flow rate is decreased. However, the flow rates corresponding to appearance and disappearance are not necessarily the same. By varying the aspect ratio of the channel, or the depth of the channel divided by its width, they saw differences in how the spiral formed and collapsed.

Specifically, with a smaller aspect ratio the spiral would form and collapse again at the same flow rate. But, in devices with large aspect ratios, the spiral collapsed at a lower flow rate than that at which it had formed, exhibiting what is called hysteresis.

Interestingly, the team identified a very specific value of the aspect ratio, called a tricritical point, and the growth and collapse of the spiral vortex happens very suddenly over a narrow range of flow rate. All of this information could be useful in understanding and optimizing basic fluid transport processes, predicting fluid instability conditions, and enhancing the mixing of fluids.

"In any channel we can predict when the spiral will form, how big it will grow, and the mixing quality that will result," Haward said.

This could also have implications in other research because "in microfluidic devices it can be difficult to begin the mixing process," Shen said. "Our results suggest that if we make the channel dimensions deeper than it is easier to induce mixing."

Research paper: Tricritical spiral vortex instability in cross-slot flow


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Mysterious 'four-dimensional' iron oxide explained
Moscow, Russia (SPX) Apr 20, 2016
An international group of researchers including Russian scientists from the Moscow State University has been studying the behaviour of the recently-discovered Fe4O5, iron oxide. The group has succeeded in describing its complex structure, and proposed an explanation for its very unusual properties. The article appeared in the current issue of the journal Nature Chemistry. The scientists di ... read more


TECH SPACE
Electrons slide through the hourglass on surface of bizarre material

Simple 3-D fabrication technique for bio-inspired hierarchical structures

Laser source for biosensors

Indian space scientists produce world's lightest synthetic material

TECH SPACE
Haigh-Farr showcases Antenna Solutions at DATT Summit

U.S. Army orders radios for Mid-East, African countries

Harris supplies tactical radios to African country

In-orbit delivery of Laos' 1st satellite launched

TECH SPACE
Europe makes fourth attempt to launch Russian rocket

Sentinel-1B in position for liftoff

Arianespace cooperation with Russia remains smooth amid sanctions

Orbital ATK awarded major sounding rocket contract by NASA

TECH SPACE
Satellite touchdown in run up to Galileo launch

Russian Glonass Satellite Scheduled for Launch on May 21

Glonass navigation system's ground infrastructure successfully completed

China launches 22nd BeiDou navigation satellite

TECH SPACE
Heavy-lift helicopters test external load capabilities

Russian stealth bomber to carry hypersonic missiles

Experts examine new debris for MH370 clues

Delayed take-off for China's own regional jet

TECH SPACE
A single-atom magnet breaks new ground for future data storage

Hafnium oxide used for new type of non-volatile memory

Quantum computing closer as RMIT drives towards first quantum data bus

'Odd couple' monolayer semiconductors align to advance optoelectronics

TECH SPACE
Sentinel-1 sees rice paddy drop in the Mekong Delta

DigitalGlobe delivers first phase of continent-scale mapping initiative for PSMA Australia

Astrix fiber optic gyro to fly on NASA CNES mission

Study shows cloud patterns reveal species habitat

TECH SPACE
China probes polluted school as parents urge action

Expect more unhealthy ozone days in the next decades: study

Pollutants in fish inhibit human's natural defense system

China air pollution shifts west in first quarter: Greenpeace









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.