Space Industry and Business News  
NANO TECH
Liquid metal nano printing set to revolutionize electronics
by Staff Writers
Melbourne, Australia (SPX) Feb 21, 2017


Computer chips could be thinner and faster.

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics. The process opens the way for the production of large wafers around 1.5 nanometres in depth (a sheet of paper, by comparison, is 100,000nm thick). Other techniques have proven unreliable in terms of quality, difficult to scale up and function only at very high temperatures - 550 degrees or more.

Distinguished Professor Kourosh Kalantar-zadeh, from the School of Engineering at RMIT University in Melbourne, Australia, led the project, which also included colleagues from RMIT and researchers from CSIRO, Monash University, North Carolina State University and the University of California. He said the electronics industry had hit a barrier.

"The fundamental technology of car engines has not progressed since 1920 and now the same is happening to electronics. Mobile phones and computers are no more powerful than five years ago. That is why this new 2D printing technique is so important - creating many layers of incredibly thin electronic chips on the same surface dramatically increases processing power and reduces costs.

"It will allow for the next revolution in electronics."

Benjamin Carey, a researcher with RMIT and the CSIRO, said creating electronic wafers just atoms thick could overcome the limitations of current chip production.

It could also produce materials that were extremely bendable, paving the way for flexible electronics.

"However, none of the current technologies are able to create homogenous surfaces of atomically thin semiconductors on large surface areas that are useful for the industrial scale fabrication of chips.

"Our solution is to use the metals gallium and indium, which have a low melting point.

"These metals produce an atomically thin layer of oxide on their surface that naturally protects them. It is this thin oxide which we use in our fabrication method.

"By rolling the liquid metal, the oxide layer can be transferred on to an electronic wafer, which is then sulphurised. The surface of the wafer can be pre-treated to form individual transistors.

"We have used this novel method to create transistors and photo-detectors of very high gain and very high fabrication reliability in large scale."

The paper outlining the new technique, "Wafer Scale Two Dimensional Semiconductors from Printed Oxide Skin of Liquid Metals", has been published in the journal, Nature Communications.

NANO TECH
Nano-level lubricant tuning improves material for electronic devices and surface coatings
Chicago IL (SPX) Feb 17, 2017
Molybdenum disulfide (MoS2), which is ubiquitously used as a solid lubricant, has recently been shown to have a two-dimensional (2D) form that is similar to graphene. But, when thinned down to less than a nanometer thick, MoS2 demonstrates properties with great promise as a functional material for electronic devices and surface coatings. Researchers at the University of Illinois at Urbana- ... read more

Related Links
RMIT University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Penn researchers are among the first to grow a versatile 2-dimensional material

Breakthrough with a chain of gold atoms

Breakthrough in 'wonder' materials paves way for flexible tech

When ultrafast laser pulse meets magnetic materials

NANO TECH
Russia showcases jam-proof communications system

Space aggressors jam AF, allies' systems

Harris intros new wideband manpack radio system

General Dynamics gets enterprise communications contract

NANO TECH
NANO TECH
Police in China's restive Xinjiang to track cars by GPS

GLONASS station in India to expedite 'space centric' warfare command

Australia and Lockheed field 2nd-Gen sat-based augmentation system

UK may lose access to EU Galileo GPS system after Brexit

NANO TECH
Russia-UAE 5th-generation fighter jet to be developed no earlier than 2025

Airbus profits hit by military plane woes

Liquid hydrogen may be way forward for sustainable air travel

Russian Helicopters in talks with India for 200 aircraft

NANO TECH
Particles from outer space are wreaking low-grade havoc on personal electronics

Artificial synapse for neural networks

Combining the ultra-fast with the ultra-small

A new spin on electronics

NANO TECH
In Atmospheric River Storms, Wind Is a Risk, Too

'Quartz' crystals at the Earth's core power its magnetic field

Airbus to develop payload for first Franco-German Earth observation satellite

First-ever global view of transshipment in commercial fishing industry

NANO TECH
Ex-yoga missionary unleashes rage on Philippine miners

Vietnam to punish officials over mass fish deaths

Tiny plastic particles from clothing, tyres clogging oceans: report

Underwater seagrass beds dial back polluted seawater









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.