Subscribe free to our newsletters via your
. Space Industry and Business News .




BIO FUEL
Lignin-Feasting Microbe Holds Promise for Biofuels
by Lynn Yarris for Berkeley News
Berkeley CA (SPX) Nov 15, 2013


An expedition into the Luquillo Experimental Forest in Puerto Rico by JBEI and Berkeley Lab researchers led to the identification of a soil microbe that utilizes lignin as its sole source of carbon.

Nature designed lignin, the tough woody polymer in the walls of plant cells, to bind and protect the cellulose sugars that plants use for energy. For this reason, lignin is a major challenge for those who would extract those same plant sugars and use them to make advanced biofuels.

As part of their search for economic ways to overcome the lignin challenge, researchers at the Joint BioEnergy Institute (JBEI) have characterized the enzymatic activity of a rain forest microbe that breaks down lignin essentially by breathing it.

"Using a combination of transcriptomics and proteomics we observed the anaerobe Enterobacter lignolyticus SCF1 as it grows on lignin," says Blake Simmons, a chemical engineer who heads JBEI's Deconstruction Division.

"We detected significant lignin degradation over time by absorbance, suggesting that enzymes in E. lignolyticus could be used to deconstruct lignin and improve biofuels production. Our results also demonstrate the value of a multi-omics approach for providing insight into the natural processes of bacterial lignin decomposition."

Not only does lignin inhibit access to cellulose, the by-products of lignin degradation can also be toxic to microbes employed to ferment sugars into fuels. This makes finding microbes that can tolerate a lignin environment a priority for biofuels research. Tropical rainforests harbor anaerobic microbes that actually utilize lignin as their sole source of carbon.

Kristen DeAngelis, a microbial ecologist formerly of JBEI and now with the University of Massachusetts, has led expeditions to the Luquillo Experimental Forest where she and her crew harvested soil microbes.

"Tropical soil microbes are responsible for the nearly complete decomposition of leaf plant litter in as little as eighteen months," she says. "The fast growth, high efficiency and specificity of enzymes employed in the anaerobic litter deconstruction carried out by these tropical soil bacteria make them useful templates for improving biofuel production."

In an earlier study at JBEI led by DeAngelis, E. lignolyticus SCF1 is a member, was shown to be capable of anaerobic lignin degradation, but the enzymes behind this degradation were unknown.

Through their multi-omics approach plus measurements of enzyme activities, DeAngelis, Simmons and their colleagues were able to characterize the mechanisms by which E. lignolyticus SCF1 is able to degrade lignin during anaerobic growth conditions.

"We found that E. lignolyticus SCF1 is capable of degrading 56-percent of the lignin under anaerobic conditions within 48 hours, with increased cell abundance in lignin-amended compared to unamended growth," Simmons says.

"Proteomics analysis enabled us to identify 229 proteins that were significantly differentially abundant between the lignin-amended and unamended growth conditions. Of these, 127 proteins were at least two-fold up-regulated in the presence of lignin."

This new study also showed that E. lignolyticus SCF1 is able to degrade lignin via both assimilatory and dissimilatory pathways, the first soil bacterium to demonstrate this dual capability.

"Our next step is to look at what kind of chemical bonds are preferred by these two different pathways of reduction," DeAngelis says. "We can then try to develop tailored routes to targeted intermediates by defining the molecular mechanisms of enzymatic reactions with lignin."

This work was supported by the University of Massachusetts, Amherst, the Environmental Molecular Sciences Laboratory (EMSL) and JBEI through the U.S. Department of Energy's Office of Science. A paper describing this research has been published in the journal Frontiers in Microbiology (Microbial Physiology and Metabolism) under the title "Evidence supporting

dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1." In addition to DeAngelis and Simmons, other authors were Deepak Sharma, Rebecca Varney, Nancy Isern, Lye Markillie, Carrie Nicora, Angela Norbeck, Ronald Taylor, Joshua Aldrich and Errol Robinson.

.


Related Links
Joint BioEnergy Institute
Environmental Molecular Sciences Laboratory
Bio Fuel Technology and Application News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








BIO FUEL
USDA Grant Aims to Convert Beetle-Killed Trees into Biofuel
Fort Collins CO (SPX) Nov 11, 2013
The U.S. Department of Agriculture (USDA) has announced that it has awarded nearly $10 million to an academic, industry, and government consortium led by Colorado State University to study the major challenges limiting the use of insect-killed trees in the Rockies as a sustainable feedstock for bioenergy. The award was made by USDA's National Institute of Food and Agriculture (NIFA). "Infe ... read more


BIO FUEL
Protection Of Materials And Structures From Space Environment at ICPMSE 11

Snap to attention: Polymers that react and move to light

Altering surface textures in 'counterintuitive manner' may lead to cooling efficiency gains

Methane-munching microorganisms meddle with metals

BIO FUEL
Self-correcting crystal may unleash the next generation of advanced communications

Northrop Grumman Receives Contract to Sustain Joint STARS Fleet

Raytheon expands international footprint of electronic warfare capability

Latest AEHF Comms Payload Gets Boost From Customized Integrated Circuits

BIO FUEL
ASTRA 5B lands in French Guiana for its upcoming Ariane 5 flight

Kazakhstan say Baikonur launch site may be open to Western countries

ESA Swarm launch postponed

Europe's fifth ATV for launch by Arianespace begins its pre-flight checkout at the Spaceport

BIO FUEL
Russia to enforce GLONASS Over GPS

How pigeons may smell their way home

UK conservationists using location-based system ManagePlaces

A Better Way to Track Your Every Move

BIO FUEL
Vets of Doolittle WWII raid hold a final reunion

Indonesia evacuates bodies after deadly helicopter crash

Boeing and Kongsberg Defense Systems Complete Joint Strike Missile Check on FA-18 Super Hornet

New Boeing B-52 Upgrade to Increase Smart Weapons Capacity by Half

BIO FUEL
Accidental discovery dramatically improves electrical conductivity

Super-thin membranes clear the way for chip-sized pumps

German chip maker Infineon meets full-year targets: firm

Diamond Imperfections Pave the Way to Technology Gold

BIO FUEL
UMD, Google and gov. create first detailed map of global forest change

UN tasks imaging satellites for Haiyan relief

Satellites packed like sardines

Global map provides new insights into land use

BIO FUEL
Albania refuses to host Syria arsenal destruction

Protests grow in Albania against Syria weapons destruction

Street sweepers' strike hampers Madrid tourism

Litter piles up in Madrid as strike goes on




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement