Space Industry and Business News  
STELLAR CHEMISTRY
Lightning bolt underwater
by Staff Writers
Bochum, Germany (SPX) Jul 01, 2019

file illustration only

Electrochemical cells help recycle CO2. However, the catalytic surfaces get worn down in the process. Researchers at the Collaborative Research Centre 1316 "Transient atmospheric plasmas: from plasmas to liquids to solids" at Ruhr-Universitat Bochum (RUB) are exploring how they might be regenerated at the push of a button using extreme plasmas in water.

In a first, they deployed optical spectroscopy and modelling to analyse such underwater plasmas in detail, which exist only for a few nanoseconds, and to theoretically describe the conditions during plasma ignition. They published their report in the journal Plasma Sources Science and Technology on 4 June 2019.

Plasmas are ionised gases: they are formed when a gas is energised that then contains free electrons. In nature, plasmas occur inside stars or take the shape of polar lights on Earth. In engineering, plasmas are utilised for example to generate light in fluorescent lamps, or to manufacture new materials in the field of microelectronics.

"Typically, plasmas are generated in the gas phase, for example in the air or in noble gases," explains Katharina Grosse from the Institute for Experimental Physics II at RUB.

Ruptures in the water
In the current study, the researchers have generated plasmas directly in a liquid. To this end, they applied a high voltage to a submerged hairline electrode for the range of several billionth seconds. Following plasma ignition, there is a high negative pressure difference at the tip of the electrode, which results in ruptures forming in the liquid. Plasma then spreads across those ruptures. "Plasma can be compared with a lightning bolt - only in this case it happens underwater," says Katharina Grosse.

Hotter than the sun
Using fast optical spectroscopy in combination with a fluid dynamics model, the research team identified the variations of power, pressure, and temperature in these plasmas. "In the process, we observed that the consumption inside these plasmas briefly amounts to up to 100 kilowatt.

This corresponds with the connected load of several single-family homes," points out Professor Achim von Keudell from the Institute for Experimental Physics II. In addition, pressures exceeding several thousand bars are generated - corresponding with or even exceeding the pressure at the deepest part of the Pacific Ocean.

Finally, there are short bursts of temperatures of several thousand degrees, which roughly equal and even surpass the surface temperature of the sun.

Water is broken down into its components
Such extreme conditions last only for a very short time. "Studies to date had primarily focused on underwater plasmas in the microsecond range," explains Katharina Grosse. "In that space of time, water molecules have the chance to compensate for the pressure of the plasma."

The extreme plasmas that have been the subject of the current study feature much faster processes. The water can't compensate for the pressure and the molecules are broken down into their components. "The oxygen that is thus released plays a vital role for catalytic surfaces in electrochemical cells," explains Katharina Grosse.

"By re-oxidating such surfaces, it helps them regenerate and take up their full catalytic activity again. Moreover, reagents dissolved in water can also be activated, thus facilitating catalysis processes."

Research Report: Nanosecond plasmas in water: ignition, cavitation and plasma parameters


Related Links
Ruhr-University Bochum
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Sailing among the stars: how photons could revolutionize space flight
Washington (AFP) June 20, 2019
A few days from now, a SpaceX Falcon Heavy rocket will lift off from Florida, carrying a satellite the size of a loaf of bread with nothing to power it but a huge polyester "solar sail." It's been the stuff of scientists' dreams for decades but has only very recently become a reality. The idea might sounds crazy: propelling a craft through the vacuum of space with no engine, no fuel, and no solar panels, but instead harnessing the momentum of packets of light energy known as photons - in this ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Mimicking the ultrastructure of wood with 3D-printing

Researchers see around corners to detect object shapes

Laser trick produces high-energy terahertz pulses

A new manufacturing process for aluminum alloys

STELLAR CHEMISTRY
AEHF-5 encapsulated and prepared for launch

Corps begins fielding mobile satellite communication system

AFRL demonstrates world's first daytime free-space quantum communication enabled by adaptive optics

Harris to build new satellite connection system prototype for USAF

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Lockheed Martin Delivers GPS III Contingency Operations

China to complete BeiDou-3 satellite system by 2020

China's satellite navigation industry scale to exceed 400 billion yuan in 2020

China to launch six to eight BDS-3 satellites this year

STELLAR CHEMISTRY
Climate impacts of airplane contrails could triple by 2050

NASA marks milestones in development of electric X-57

VKF Wind Tunnel D officially returns to service as an AFRL research facility

Europe takes new step toward future combat jet

STELLAR CHEMISTRY
Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing

Hong Kong's extradition law jolts business community

Laser technique could unlock use of tough material for next-generation electronics

NIST physicists 'teleport' logic operation between separated ions

STELLAR CHEMISTRY
TanDEM-X reveals glaciers in detail

Airbus built SEOSAT Ingenio is finished and ready for testing

Satellite observations improve earthquake monitoring, response

SMOS joins forces with top weather forecasting system

STELLAR CHEMISTRY
Getting to zero: the Japan town trying to recycle all its waste

Air Force diverted $66M from projects for chemical cleanup costs

'Sand mafias' threaten Morocco's coastline

Searching for the source of microplastics in European rivers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.