Space Industry and Business News  
ENERGY TECH
Light work for superconductors
by Staff Writers
Tokyo, Japan (SPX) Oct 17, 2019

The equipment used to run the experiment.

For the first time researchers successfully used laser pulses to excite an iron-based compound into a superconducting state. This means it conducted electricity without resistance. The iron compound is a known superconductor at ultralow temperatures, but this method enables superconduction at higher temperatures. It is hoped this kind of research could greatly improve power efficiency in electrical equipment and electronic devices.

"Put simply, we demonstrated that under the right conditions, light can induce a state of superconductivity in an iron compound. So it has no resistance to an electric current," explained Project Researcher Takeshi Suzuki from the Institute for Solid State Physics at the University of Tokyo. "In the past it may even have been called alchemy, but in reality we understand the physical processes that instantly changed a normal metal into a superconductor. These are exciting times for physics."

Superconduction is a hot topic in solid state physics, or rather a very, very cold one. As Suzuki explained, superconduction is when a material, frequently an electrical conductor, carries an electric current but does not add to the resistance of the circuit. If this can be realized, it would mean devices and infrastructure based on such principles could be extremely power efficient. In other words, it could one day save you money on your electricity bill - imagine that.

However, at present there is a catch as to why you don't already see superconductor-based televisions and vacuum cleaners in the stores. Materials such as iron selenide (FeSe) the researchers investigated only superconduct when they are far below the freezing point of water.

In fact, at ambient-pressure FeSe usually superconducts at around 10 degrees above absolute zero, or around minus 263 degrees Celsius, scarcely warmer than the cold, dark depths of space.

There is a way to coax FeSe into superconduction at slightly less forbidding temperatures of up to around minus 223 degrees Celsius, but this requires enormous pressures to be applied to the sample, around six gigapascals or 59,000 times standard atmosphere at sea level.

That would prove impractical for the implementation of superconduction into useful devices. This then presents a challenge to physicists, albeit one that serves to motivate them as they strive to one day be the first to present a room-temperature superconductor to the world.

"Every material in our daily lives has its own character. Foam is soft, rubber is flexible, glass is transparent and a superconductor has a unique trait that current can flow smoothly with no resistance. This is a character we would all like to meet," said graduate student Mari Watanabe, also from the Institute for Solid State Physics.

"With a high-energy, ultrafast laser, we successfully observed an emergent photo-excited phenomenon - superconduction - at the warmer temperature of minus 258 degrees Celsius, which would ordinarily require high pressures or other impractical compromises."

This research is the latest in a long line of steps from the discovery of superconduction to the long-awaited day when a room-temperature superconductor may become possible. And as with many emerging fields of study within physics, there may be applications that have not yet been envisaged. One possible use of this idea of photo-excitation is to achieve high-speed switching components for computation which would also produce little heat, thus maximize efficiency.

"Next, we will search for more favorable conditions for light-induced superconductivity by using a different kind of light, and eventually achieve room-temperature superconductivity," concluded Suzuki.

"Superconductivity can dramatically reduce waste heat and energy if it can be used in everyday life at room temperature. We are keen to study superconductivity in order to solve the energy problem, which is one of the most serious problems in the world right now."

Research Report: "Photoinduced possible superconducting state with long-lived disproportionate band filling in FeSe"


Related Links
University of Tokyo
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


ENERGY TECH
Pressure may be key to thermoelectric generators
Washington DC (SPX) Oct 08, 2019
Pressure improves the ability of materials to turn heat into electricity and could potentially be used to create clean generators, according to new work from a team that includes Carnegie's Alexander Goncharov and Viktor Struzhkin published in Nature Materials. Alternative energy sources are key to combating climate change caused by carbon emissions. Compounds with thermoelectric capabilities can convert thermal energy's innate, physical need to spread from a hot place into a cold place into energ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Physicists shed new light on how liquids behave with other materials

Chains of atoms move at lightning speed inside metals

Electronic solid could reduce carbon emissions in fridges and air conditioners

German shooter video stays online despite crackdown

ENERGY TECH
DARPA announces final teams for Spectrum Collaboration Challenge Championship event

Eight companies share Navy's $968.1M C4ISR contract

US Air Force selects Hughes to strengthen SATCOM resilience

New FlexGround Service Delivers High-Speed Broadband to Forces in Remote Areas

ENERGY TECH
ENERGY TECH
Highly accurate GPS is possible thanks to NASA

Northrop Grumman awarded $1.39B for new Air Force navigation system

China launches two new BeiDou satellites

Russia develops first ever standard for satellite navigation in Arctic

ENERGY TECH
NASA's supersonic X-59 QueSST coming together at Skunk Works

German climate plan brings sharp air travel tax hike

South Korea to buy 20 more F-35 fighter planes

NASA takes delivery of first all-electric experimental aircraft

ENERGY TECH
Radiation detector with the lowest noise in the world boosts quantum work

Researchers develop tiny infrared spectrometer

The future of 'extremely' energy-efficient circuits

Spin devices get a paint job

ENERGY TECH
New method delivers first global picture of mutual predictability of atmosphere and ocean

ICON satellite to study boundary between Earth's atmosphere, space

Successful ocean-monitoring satellite mission ends

'Going to the Top of the World to Touch the Sky' to feature in NASA lecture

ENERGY TECH
Project launched to study artificial lighting at night from space

Astronauts and citizens team up against light pollution

Minister says oil on Brazil beaches 'probably' Venezuelan

Unilever to halve use of new plastic









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.