Space Industry and Business News  
SOLAR DAILY
Light 'relaxes' crystal to boost solar cell efficiency
by Staff Writers
Houston TX (SPX) Apr 10, 2018

Constant illumination was found to relax the lattice of a perovskite-like material, making it more efficient at collecting sunlight and converting it to energy. The stable material was tested for solar cell use by scientists at Rice University and Los Alamos National Laboratory.

Some materials are like people. Let them relax in the sun for a little while and they perform a lot better.

A collaboration led by Rice University and Los Alamos National Laboratory found that to be the case with a perovskite compound touted as an efficient material to collect sunlight and convert it into energy.

The researchers led by Aditya Mohite, a staff scientist at Los Alamos who will soon become a professor at Rice; Wanyi Nie, also a staff scientist at Los Alamos, and lead author and Rice graduate student Hsinhan (Dave) Tsai discovered that constant illumination relaxes strain in perovskite's crystal lattice, allowing it to uniformly expand in all directions.

Expansion aligns the material's crystal planes and cures defects in the bulk. That in turn reduces energetic barriers at the contacts, making it easier for electrons to move through the system and deliver energy to devices.

This not only improves the power conversion efficiency of the solar cell, but also does not compromise its photostability, with negligible degradation over more than 1,500 hours of operation under continuous one-sun illumination of 100 milliwatts per cubic centimeter.

The research, which appears this week in Science, represents a significant step toward stable perovskite-based solar cells for next generation solar-to-electricity and solar-to-fuel technologies, according to the researchers.

"Hybrid perovskite crystal structures have a general formula of AMX3, where A is a cation, M is a divalent metal and X is a halide," Mohite said. "It's a polar semiconductor with a direct band gap similar to that of gallium arsenide.

"This endows perovskites with an absorption coefficient that is nearly an order of magnitude larger than gallium arsenide (a common semiconductor in solar cells) across the entire solar spectrum," he said. "This implies that a 300-nanometer thick film of perovskites is sufficient to absorb all the incident sunlight. By contrast, silicon is an indirect band gap material that requires 1,000 times more material to absorb the same amount of sunlight."

Mohite said researchers have long sought efficient hybrid perovskites that are stable in sunlight and under ambient environmental conditions.

"Through this work, we demonstrated significant progress in achieving both of these objectives," he said. "Our triple-cation-based perovskite in a cubic lattice shows excellent temperature stability at more than 100 degrees Celsius (212 degrees Fahrenheit)."

The researchers modeled and made more than 30 semiconducting, iodide-based thin films with perovskite-like structures: Crystalline cubes with atoms arranged in regular rows and columns. They measured their ability to transmit current and found that when soaked with light, the energetic barrier between the perovskite and the electrodes largely vanished as the bonds between atoms relaxed.

They were surprised to see that the barrier remained quenched for 30 minutes after the light was turned off. Because the films were kept at a constant temperature during the experiments, the researchers were also able to eliminate heat as a possible cause of the lattice expansion.

Measurements showed the "champion" hybrid perovskite device increased its power conversion efficiency from 18.5 percent to 20.5 percent. On average, all the cells had a raised efficiency above 19 percent. Mohite said perovskites used in the study were 7 percent away from the maximum possible efficiency for a single-junction solar cell.

He said the cells' efficiency was nearly double that of all other solution-processed photovoltaic technologies and 5 percent lower than that of commercial silicon-based photovoltaics. They retained 85 percent of their peak efficiency after 800 hours of continuous operation at the maximum power point, and their current density showed no photo-induced degradation over the entire 1,500 hours.

"This work will accelerate the scientific understanding required to achieve perovskite solar cells that are stable," Mohite said. "It also opens new directions for discovering phases and emergent behaviors that arise from the dynamical structural nature, or softness, of the perovskite lattice."

The lead researchers indicated the study goes beyond photovoltaics as it connects, for the first time, light-triggered structural dynamics with fundamental electronic transport processes. They anticipate it will lead to technologies that exploit light, force or other external triggers to tailor the properties of perovskite-based materials.

Research paper


Related Links
Rice University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
meeco to install 7 MWp sun2fix Open Access renewable energy generation plant in India
Zug, Switzerland (SPX) Apr 05, 2018
The cost of power is one of the key concerns for industries and commercial enterprises across the globe as well as in India. Maharashtra in India is one of the most industrialised states in India, and the industries are exploring ways to utilise renewable energy to reduce and hedge their energy cost. The Open Access model provides a way by which renewable solar power can be wheeled across the state to accommodate situations where the energy intensive customers do not have sufficient space at their ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Researchers develop nanoparticle films for high-density data storage

Berkeley Lab scientists print all-liquid 3-D structures

JFSCC tracks Tiangong-1's reentry over the Pacific Ocean

Laser beam traps long-lived sound waves in crystalline solids

SOLAR DAILY
India Struggling to Establish Lost Link With Crucial Communication Satellite

Indian scientists lose contact with satellite

Russian Soyuz launches military satellite

India set to launch S-Band satellite for military communications

SOLAR DAILY
SOLAR DAILY
China sends twin BeiDou-3 navigation satellites into space

Indra Expands With Four New Stations The Ground Segment Managing Galileo Satellites

GMV leads a project for application of EGNOS to maritime safety

Why Russia is one step ahead of US Army's plans for future GPS

SOLAR DAILY
Pilot dies in Myanmar military plane crash

NASA X-Plane construction set to begin

US F-16 crashes near Las Vegas, third crash in two days

Boeing awarded $1.1B for Super Hornets for Kuwait

SOLAR DAILY
Broadcom moves back to the US

The future of photonics using quantum dots

China tightens rules on transferring tech know-how

Toshiba awaits regulator approval for key chip unit sale

SOLAR DAILY
The Viking, the dragon and the god of thunder

Taking the Pulse of Greenhouse Gases

Proba-1 spots Giza pyramids from space

Sentinel-3B launch preparations in full swing

SOLAR DAILY
Trump's environment chief faces intensifying scrutiny

Russia landfill protest town on 'high alert'

UK plans plastic bottle charge to tackle pollution

Five ways to halt 'critical' land decay









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.