Space Industry and Business News  
NANO TECH
Light Touch Brightens Nanotubes

Most sections of the doped nanotubes remain pristine and absorb infrared light normally, forming excitons, quasiparticles that tend to hop back and forth along the tube - until they encounter oxygen. An animation is available here.
by Staff Writers
Houston TX (SPX) Dec 03, 2010
Rice University researchers have discovered a simple way to make carbon nanotubes shine brighter. The Rice lab of researcher Bruce Weisman, a pioneer in nanotube spectroscopy, found that adding tiny amounts of ozone to batches of single-walled carbon nanotubes and exposing them to light decorates all the nanotubes with oxygen atoms and systematically changes their near-infrared fluorescence.

Chemical reactions on nanotube surfaces generally kill their limited natural fluorescence, Weisman said. But the new process actually enhances the intensity and shifts the wavelength.

He expects the breakthrough, reported online in the journal Science, to expand opportunities for biological and material uses of nanotubes, from the ability to track them in single cells to novel lasers.

Best of all, the process of making these bright nanotubes is incredibly easy - "simple enough for a physical chemist to do," said Weisman, a physical chemist himself.

He and primary author Saunab Ghosh, a graduate student in his lab, discovered that a light touch was key. "We're not the first people to study the effects of ozone reacting with nanotubes," Weisman said. "That's been done for a number of years.

"But all the prior researchers used a heavy hand, with a lot of ozone exposure. When you do that, you destroy the favorable optical characteristics of the nanotube. It basically turns off the fluorescence. In our work we only add about one oxygen atom for 2,000-3,000 carbon atoms, a very tiny fraction."

Ghosh and Weisman started with a suspension of nanotubes in water and added small amounts of gaseous or dissolved ozone. Then they exposed the sample to light. Even light from a plain desk lamp would do, they reported.

Most sections of the doped nanotubes remain pristine and absorb infrared light normally, forming excitons, quasiparticles that tend to hop back and forth along the tube - until they encounter oxygen.

"An exciton can explore tens of thousands of carbon atoms during its lifetime," Weisman said. "The idea is that it can hop around enough to find one of these doping sites, and when it does, it tends to stay there, because it's energetically stable. It becomes trapped and emits light at a longer (red-shifted) wavelength.

"Essentially, most of the nanotube is turning into an antenna that absorbs light energy and funnels it to the doping site. We can make nanotubes in which 80 to 90 percent of the emission comes from doped sites," he said.

Lab tests found the doped nanotubes' fluorescent properties to be stable for months.

Weisman said treated nanotubes could be detected without using visible light. "Why does that matter? In biological detection, any time you excite at visible wavelengths, there's a little bit of background emission from the cells and from the tissues. By exciting instead in the infrared, we get rid of that problem," he said.

The researchers tested their ability to view doped nanotubes in a biological environment by adding them to cultures of human uterine adenocarcinoma cells. Later, images of the cells excited in the near-infrared showed single nanotubes shining brightly, whereas the same sample excited with visible light displayed a background haze that made the tubes much more difficult to spot.

His lab is refining the process of doping nanotubes, and Weisman has no doubt about their research potential. "There are many interesting scientific avenues to pursue," he said. "And if you want to see a single tube inside a cell, this is the best way to do it. The doped tubes can also be used for biodistribution studies.

"The nice thing is, this isn't an expensive or elaborate process," Weisman said. "Some reactions require days of work in the lab and transform only a small fraction of your starting material. But with this process, you can convert an entire nanotube sample very quickly."

The paper's co-authors include Rice research scientist Sergei Bachilo, research technician Rebecca Simonette and Kathleen Beckingham, a Rice professor of biochemistry and cell biology.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Rice University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
Cinnamon Can Replace Harmful Chemicals Used To Create Nanoparticles
Columbia MO (SPX) Dec 01, 2010
Gold nanoparticles, tiny pieces of gold so small that they can't be seen by the naked eye, are used in electronics, healthcare products and as pharmaceuticals to fight cancer. Despite their positive uses, the process to make the nanoparticles requires dangerous and extremely toxic chemicals. While the nanotechnology industry is expected to produce large quantities of nanoparticles in the n ... read more







NANO TECH
Google unveils new smartphone, the Nexus S

Philips buys China's LED maker NCW

Google opens e-book store in Kindle challenge

Thales announces venture for Chinese in-flight systems

NANO TECH
Codan Receives JITC Certification For 2110 HF Manpack

Northrop Grumman Bids for Marine Corps Common Aviation CnC

DSP Satellite System Celebrates 40 Years

ManTech Awarded US Army Contract To Provide ECCS In Afghanistan

NANO TECH
US company's spacecraft launch delayed to Thursday

NASA Sets Coverage For COTS 1 Launch

Hylas-1 In Orbit Brings Europe Broadband From Space

Ariane rocket puts telecom satellites into orbit

NANO TECH
GPS Satellite Achieves 20 Years On-Orbit

World-Leading Spatial Experts Meet In Sydney

Space Ministers Emphasise Priority To Deliver Galileo And GMES

New Simulator Offers Ability To Record And Replay GLONASS And GPS

NANO TECH
Hong Kong's Cathay Pacific names new chief, eyes China

Iran upset over EU refusal to refuel its airplanes

Cathay Pacific chief nominated to take helm of IATA

Rolls-Royce troubled by engine blowout

NANO TECH
High Performance Infrared Camera Based On Type-II InAs GaSb Superlattices

World's Fastest Camera Takes A New Look At Biosensing

Manufacturing Made To Measure Atomic-Scale Electrodes

Short Light Pulses Will Enable Ultrafast Data Transfer Within Computer Chips

NANO TECH
Google to pay couple one dollar for trespassing

Mapping Mangroves By Satellite

Novel Services For Tropical Forest Monitoring With Satellite

Forest Imaging In Gabon For UN

NANO TECH
Australia, Denmark to discuss toxic waste shipment: minister

Quarter of HK people want to move over bad air: survey

China ban keeps up to 100 billion bags out of landfills

Denmark halts Australian toxic waste shipment


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement