Space Industry and Business News  
NANO TECH
Lehigh Researchers Slow Broadband Light Waves With Nanoplasmonic Structures

Microscope images of graded gratings with different gradients. In this measurement, three filters are employed: (a) A multi-band filter (Semrock, transmission bands centered at 542nm and 639nm). (b) A green filter centered at 546nm (bandwidth 6nm). (c) A red filter centered at 655nm (bandwidth 12nm). Credit: Filbert J. Bartoli, Lehigh University
by Staff Writers
Bethlehem PA (SPX) Mar 16, 2011
A team of electrical engineers and chemists at Lehigh University have experimentally verified the "rainbow" trapping effect, demonstrating that plasmonic structures can slow down light waves over a broad range of wavelengths.

The idea that a rainbow of broadband light could be slowed down or stopped using plasmonic structures has only recently been predicted in theoretical studies of metamaterials. The Lehigh experiment employed focused ion beams to mill a series of increasingly deeper, nanosized grooves into a thin sheet of silver.

By focusing light along this plasmonic structure, this series of grooves or nano-gratings slowed each wavelength of optical light, essentially capturing each individual color of the visible spectrum at different points along the grating. The findings hold promise for improved data storage, optical data processing, solar cells, bio sensors and other technologies.

While the notion of slowing light or trapping a rainbow sounds like ad speak, finding practical ways to control photons-the particles that makes up light- could significantly improve the capacity of data storage systems and speed the processing of optical data.

The research required the ability to engineer a metallic surface to produce nanoscale periodic gratings with varying groove depths. This alters the optical properties of the nanopatterned metallic surface, called Surface Dispersion Engineering.

The broadband surface light waves are then trapped along this plasmonic metallic surface with each wavelength trapped at a different groove depth, resulting in a trapped rainbow of light.

Through direct optical measurements, the team showed that light of different wavelengths in the 500-700nm region was "trapped" at different positions along the grating, consistent with computer simulations.

To prepare the nanopattern gratings required "milling" 150nm wide rectangular grooves every 520nm along the surface of a 300-nm-thick silver sheet. While intrinsic metal loss on the surface of the metal did not permit the complete "stopping" of these plasmons, future research may look into compensating this loss in an effort to stop light altogether.

"Metamaterials, which are man-made materials with feature sizes smaller than the wavelength of light, offer novel applications in nanophotonics, photovoltaic devices, and biosensors on a chip," said Filbert J. Bartoli, principal investigator, professor and chair of the Department of Electrical and Computer Engineering. "Creating such nanoscale patterns on a metal film allows us to control and manipulate light propogation.

The findings of this paper present an unambiguous experimental demonstration of rainbow trapping in plasmonic nanostructures, and represents an important step in this direction."

"This technology for slowing light at room temperature can be integrated with other materials and components, which could lead to novel platforms for optical circuits.

"The ability of surface plasmons to concentrate light within nanoscale dimensions makes them very promising for the development of biosensors on chip and the study of nonlinear optical interactions," said Qiaoqiang Gan, who completed this work while a doctoral candidate at Lehigh University, and is now an assistant professor in the Department of Electrical Engineering , State University of New York at Buffalo.

The study was conducted by Bartoli, Qiaoqiang Gan, Yongkang Gao and Yujie J. Ding of the Center for Optical Technologies in the Department of Electrical and Computer Engineering at Lehigh University; and Kyle Wagner and Dmitri V. Vezenov of the Department of Chemistry at Lehigh. The study was funded by the National Science Foundation. It is published in the current issue of the Proceedings of the National Academy of Sciences.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Lehigh University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


NANO TECH
NJIT Prof Offers New Desalination Process Using Carbon Nanotubes
Newark NJ (SPX) Mar 16, 2011
A faster, better and cheaper desalination process enhanced by carbon nanotubes has been developed by NJIT Professor Somenath Mitra. The process creates a unique new architecture for the membrane distillation process by immobilizing carbon nanotubes in the membrane pores. Conventional approaches to desalination are thermal distillation and reverse osmosis. "Unfortunately the current membran ... read more







NANO TECH
China Mobile 2010 net profit up 3.9%

US run on iodide pills despite reassurances

Foreign governments urge nationals to leave Japan quake zone

Radiation 'not threat outside nuclear plant zone'

NANO TECH
InterSKY 4M Provides BLOS Comms For C4I Military Systems

LockMart Wins Role On Navy C4ISR Services Contract

ONR Moves A Modular Space Communications Asset Into Unmanned Aircraft For Marines

Northrop Grumman Next-Gen FBCB2 System Approved For Fielding

NANO TECH
Ariane 5 Moves To Final Assembly Building

NASA Unveiling New Rocket Integration Facility At Wallops

Falcon 9 To Launch SES-8 To GTO In 2013

SES gives SpaceX first geostationary satellite launch deal

NANO TECH
N. Korea rejects Seoul's plea to stop jamming signals

Rayonier's GIS Strengthens Asset Management Capability

Space Team Improves GPS Capability For Warfighters

SSTL's European GNSS Payload Passes Design Review

NANO TECH
Rolls-Royce forecasts helicopter boom

Flights to Japan cut as foreigners scramble to leave

Air China, Taiwan's EVA cut back Japan flights

Budget airlines open up Asia's skies to the masses

NANO TECH
Taiwan's UMC to triple stake China chip maker

NIST Electromechanical Circuit Sets Record Beating Microscopic Drum

New Generation Of Optical Integrated Devices For Future Quantum Computers

JQI Physicists Demonstrate Coveted Spin-Orbit Coupling In Atomic Gases

NANO TECH
DLR Releases Satellite Images Of Japanese Disaster Area

NASA Images Tsunami Impact Across Northeastern Japan

OSI Geospatial to supply New Zealand navy

NASA And Other Satellites Keeping Busy With This Week's Severe Weather

NANO TECH
China cleaning up 'jeans capital'

Environmental Impact Of Animal Waste

Protecting Ecosystems, Pollution Remediation Goals Of Research

Battle on paradise Philippine island


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement