Space Industry and Business News  
IRON AND ICE
Largest potentially hazardous asteroid detected in eight years
by Staff Writers
Washington DC (SPX) Nov 01, 2022

illustration only

Twilight observations with the US Department of Energy-fabricated Dark Energy Camera at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF's NOIRLab, have enabled astronomers to spot three near-Earth asteroids (NEA) hiding in the glare of the Sun. These NEAs are part of an elusive population that lurks inside the orbits of Earth and Venus. One of the asteroids is the largest object that is potentially hazardous to Earth to be discovered in the last eight years.

An international team using the Dark Energy Camera (DECam) mounted on the Victor M. Blanco 4-meter Telescope at Cerro Tololo Inter-American Observatory in Chile, a Program of NSF's NOIRLab, has discovered three new near-Earth asteroids (NEAs) hiding in the inner Solar System, the region interior to the orbits of Earth and Venus. This is a notoriously challenging region for observations because asteroid hunters have to contend with the glare of the Sun.

By taking advantage of the brief yet favorable observing conditions during twilight, however, the astronomers found an elusive trio of NEAs. One is a 1.5-kilometer-wide asteroid called 2022 AP7, which has an orbit that may someday place it in Earth's path. The other asteroids, called 2021 LJ4 and 2021 PH27, have orbits that safely remain completely interior to Earth's orbit. Also of special interest to astronomers and astrophysicists, 2021 PH27 is the closest known asteroid to the Sun. As such, it has the largest general-relativity effects [1] of any object in our Solar System and during its orbit its surface gets hot enough to melt lead.

"Our twilight survey is scouring the area within the orbits of Earth and Venus for asteroids," said Scott S. Sheppard, an astronomer at the Earth and Planets Laboratory of the Carnegie Institution for Science and the lead author of the paper describing this work. "So far we have found two large near-Earth asteroids that are about 1 kilometer across, a size that we call planet killers."

"There are likely only a few NEAs with similar sizes left to find, and these large undiscovered asteroids likely have orbits that keep them interior to the orbits of Earth and Venus most of the time," said Sheppard. "Only about 25 asteroids with orbits completely within Earth's orbit have been discovered to date because of the difficulty of observing near the glare of the Sun."

Finding asteroids in the inner Solar System is a daunting observational challenge. Astronomers have only two brief 10-minute windows each night to survey this area and have to contend with a bright background sky resulting from the Sun's glare. Additionally, such observations are very near to the horizon, meaning that astronomers have to observe through a thick layer of Earth's atmosphere, which can blur and distort their observations. [2]

Discovering these three new asteroids despite these challenges was possible thanks to the unique observing capabilities of DECam. The state-of-the-art instrument is one of the highest-performance, wide-field CCD imagers in the world, giving astronomers the ability to capture large areas of sky with great sensitivity. Astronomers refer to observations as 'deep' if they capture faint objects. When hunting for asteroids inside Earth's orbit, the capability to capture both deep and wide-field observations is indispensable. DECam was funded by the US Department of Energy (DOE) and was built and tested at DOE's Fermilab.

"Large areas of sky are required because the inner asteroids are rare, and deep images are needed because asteroids are faint and you are fighting the bright twilight sky near the Sun as well as the distorting effect of Earth's atmosphere," said Sheppard. "DECam can cover large areas of sky to depths not achievable on smaller telescopes, allowing us to go deeper, cover more sky, and probe the inner Solar System in ways never done before."

As well as detecting asteroids that could potentially pose a threat to Earth, this research is an important step toward understanding the distribution of small bodies in our Solar System. Asteroids that are further from the Sun than Earth are easiest to detect. Because of that these more-distant asteroids tend to dominate current theoretical models of the asteroid population. [3]

Detecting these objects also allows astronomers to understand how asteroids are transported throughout the inner Solar System and how gravitational interactions and the heat of the Sun can contribute to their fragmentation.

"Our DECam survey is one of the largest and most sensitive searches ever performed for objects within Earth's orbit and near to Venus's orbit," said Sheppard. "This is a unique chance to understand what types of objects are lurking in the inner Solar System."

"After ten years of remarkable service, DECam continues to yield important scientific discoveries while at the same time contributing to planetary defense, a crucial service that benefits all humanity," said Chris Davis, NSF Program Director for NOIRLab.

DECam was originally built to carry out the Dark Energy Survey, which was conducted by the DOE and the US National Science Foundation between 2013 and 2019.

Research Report:A Deep and Wide Twilight Survey for Asteroids Interior to Earth and Venus


Related Links
Dark Energy Camera
Asteroid and Comet Mission News, Science and Technology


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


IRON AND ICE
NASA confirms DART impact changed asteroid's motion in space
Washington DC (SPX) Oct 13, 2022
Analysis of data obtained over the past two weeks by NASA's Double Asteroid Redirection Test (DART) investigation team shows the spacecraft's kinetic impact with its target asteroid, Dimorphos, successfully altered the asteroid's orbit. This marks humanity's first time purposely changing the motion of a celestial object and the first full-scale demonstration of asteroid deflection technology. "All of us have a responsibility to protect our home planet. After all, it's the only one we have," said N ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
NASA laser project benefits animal researchers, UW scientists show

Canada orders Chinese firms to exit rare minerals deals

NASA inflatable heat shield finds strength in flexibility

D-Orbit signs launch contract with AAC SpaceQuest

IRON AND ICE
Rivada Space Networks signs MoU with SpeQtral to develop ultra-secure communications

Elon Musk says SpaceX can't continue to fund Starlink in Ukraine

SIMBA Chain awarded SpaceWERX Orbital Prime Contract

Viasat to sell its Link 16 Tactical Data Links business to L3Harris Technologies

IRON AND ICE
IRON AND ICE
Keysight combines 5G and SatNav systems to accelerate location based services

ESA plans for low-orbiting navigation satellites

At Sandia Labs, a vision for navigating when GPS goes dark

Mexico denies Russia space deal will aid spying

IRON AND ICE
Myanmar junta diverting civilian jet fuel to military: Amnesty

Northrop Grumman taps Quickstep for Australian-made components to support F-35 program

US approves $6.35 bn aircraft sale to Australia

AIR lofts heavy payload balloon into near-space height

IRON AND ICE
Cameroon's electronic waste recyclers struggle despite historic law

Tech sector unwittingly aiding Russia: Dutch official

Germany reviewing possible Chinese takeover of chip factory

Advance brings quantum computing one step closer to implementation

IRON AND ICE
Give climate some MAGIC

Using sound to model the world

'Earth is in our hands': Astronaut Pesquet's plea for the planet

EnMAP is ready for science

IRON AND ICE
'Hazardous' smog chokes India's capital

Air pollution 'silent killer' in African cities: study

EU aims for 'zero pollution' in air and water

Post-Diwali Delhi wakes to toxic firecracker smog









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.