Space Industry and Business News  
Jet Engines Help Solve the Mysteries Of The Voice

Effie Gutmark (front), PhD, a UC professor of aerospace engineering, is applying his knowledge of jet engine noise in the study of normal and abnormal voice.
by Staff Writers
Cincinnati OH (SPX) Mar 21, 2007
Although scientists know about basic voice production-the two "vocal folds" in the larynx vibrate and pulsate airflow from the lungs-the larynx is one of the body's least understood organs.

Sound produced by vocal-fold vibration has been extensively researched, but the specifics of how airflow actually affects sound have not been shown using an animal model-until now.

Vortices, or areas of rotational motion that look like smoke rings, produce sound in jet engines. New research from the University of Cincinnati (UC) uses methods developed from the study of jet noise to identify similar vortices in an animal model.

Sid Khosla, MD, lead author of the study, says vortices may help explain why individual voices are different and can have a different richness and quality to their sound.

"If vortices didn't affect sound production, the voice would sound mechanical," says Khosla, assistant professor of otolaryngology. "The vortices can produce sound by a number of mechanisms. This complexity produces a sound that makes my voice different from yours."

Khosla and his team report their findings in the March edition of the Annals of Otology, Rhinology and Laryngology.

"Understanding how airflow patterns affect sound in a jet engine (aeroacoustics) helps us determine how we can reduce jet noise," says coauthor Ephraim Gutmark, PhD, a UC professor of aerospace engineering. "We can apply the same physical understanding of aeroacoustics to study normal and abnormal voice."

According to Khosla, computational and theoretical models have been developed to demonstrate how vortices affect sound production, but the UC team is the first to demonstrate it using an animal model, which makes their findings more applicable to the human larynx.

"Currently, when surgery is required to treat voice disorders, it's primarily done on the vocal cords," says Khosla. "Actually knowing there are additional sources that affect sound may open up a whole new way for us to treat voice disorders."

In addition to better surgery techniques, Khosla says, having a better understanding of how vortices affect voice production could help in the development of improved pharmacological approaches and clinical pathology services, as well as improved training of the voice.

Khosla and Gutmark's collaborators in the study are UC's Shanmugam Muruguppan, PhD, and Ronald Scherer, PhD, now at Bowling Green State University.

Related Links
All About Human Beings and How We Got To Be Here
All About Human Beings and How We Got To Be Here



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Fossil From 160 000 Years Ago Shows Growth Profile Similar To Modern Man
Grenoble Cedex, France (SPX) Mar 21, 2007
An international team of scientists have found that the oldest member (160,000 years old) of the genus Homo shows a life history profile similar to modern humans.







  • Publish, Perish Attitudes Make Profs Balk At Online Publication
  • World Getting Ready To Change The Light Bulb
  • Hong Kong Internet Access Fully Restored
  • New Damage And Bad Weather Delay Asian Internet Repairs

  • Next Ariane 5 Takes Shape
  • Official Opening Of The Soyuz Launch Base Construction Site In French Guiana
  • Canadian Satellite Given Final Checks At Russian Launch Pad
  • First Ariane 5 Launch Of 2007 Finally Gets Away

  • Germans Urged To Give Foreign Travel A Rest To Curb Global Warming
  • Raytheon Team Proposes Single International Standard In ADS-B Pursuit
  • NASA Signs Defense Department Agreement
  • Lockheed Martin And FAA Reach Significant Milestone In Transformation Of Flight Services

  • Northrop Grumman Adds Boeing To Its Integrated Air And Missile Defense Battle Command System Team
  • Boeing TSAT Laser Communications System Demonstrates Mission-Level Capabilities And Performance
  • QinetiQ Completes Urgent Satellite Communications System Order For MOD Helicopters
  • Harris Gets Follow-On Production Contract For Military Tactical Communications System

  • Saab Space To Supply Antennas For New Generation Direct-To-Mobile Satellites
  • Virtual Reality For Virtual Eternity
  • Boeing Orbital Express to Demonstrate New On-Orbit Servicing Capability
  • Top 10 Materials Moments In History Announced

  • Fifth Annual Space Career Fair Set For April 12
  • 30th Space Wing Welcomes New Commander
  • Joel Levine Named Mars Scout Program Scientist
  • Intelsat Names William Shernit President Of Intelsat General Subsidiary

  • DMCii To Launch New Higher-Resolution Satellite Imaging Service
  • First Greenhouse Gas Animations Produced Using Envisat SCIAMACHY Data
  • Take A Closer Look At Our Planet At The Palais De La Decouverte In Paris
  • GeoEye Acquires Leading Aerial Imagery Provider From GE Oil And Gas

  • Spanish Firms Want To Respect Galileo Accords
  • Trimble Introduces Mini GPS Clock for Precise Timing
  • GPS Sneakers Soon To Hit Retail Stores
  • Trimble's Tiny Surface Mount GPS Receiver Adds WAAS And EGNOS Capability

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement