Space Industry and Business News  
STELLAR CHEMISTRY
Jellyfish galaxy swims into view of NASA's upcoming Webb Telescope
by Christine Pulliam for STSI News
Baltimore MD (SPX) Apr 18, 2019

This composite view of ESO 137-001 includes visible light from Hubble and X-ray light from the Chandra X-ray Observatory (in blue). It reveals a tail of hot gas that has been stripped from the galaxy.

If you look at the galaxy ESO 137-001 in visible light, you can see why it's considered an example of a "jellyfish" galaxy. Blue ribbons of young stars dangle from the galaxy's disk like cosmic tentacles. If you look at the galaxy in X-ray light, however, you will find a giant tail of hot gas streaming behind the galaxy. After launch, NASA's James Webb Space Telescope will study ESO 137-001 to learn how the gas is being removed from the galaxy, and why stars are forming within that gaseous tail.

The newly forming stars in the tail are mysterious because processes common in large groups of galaxies should make it difficult for new stars to emerge. Most galaxies live in groups - for example, the Milky Way is a member of the Local Group, which also contains galaxies like Andromeda and the Triangulum spiral. Some galaxies reside in much larger gatherings of hundreds or even thousands of galaxies known as a galaxy cluster. The "jellyfish" galaxy ESO 137-001 is part of a cluster called Abell 3627.

A galaxy cluster isn't just galaxies surrounded by empty space. The realm between the galaxies is filled with hot, tenuous gas. For galaxies living in the cluster or a wandering galaxy that gets pulled in by the cluster's gravity, that gas acts like a headwind. That wind can remove gas and dust from the hapless galaxy in a process known as "ram pressure stripping."

As a result, ram pressure stripping can slow star formation in the affected galaxy. Galaxies need gas to form stars. Eventually, all galaxies run out of gas and star formation stops. Ram pressure stripping can hasten that end.

This is one reason why galaxies in clusters stop forming new stars sooner than their relatives outside of clusters. But, the mechanisms involved are still mysterious.

"Both gas and dust are getting stripped off, but how much and what happens to the stripped material and the galaxy itself are still open questions," said Stacey Alberts of the University of Arizona, a co-investigator on the project.

A star formation mystery
ESO 137-001 is a spiral galaxy similar in size to the Milky Way, and slightly less massive. Its tail extends across 260,000 light-years of space, almost three times the galaxy's width. Galactic tails like this are difficult to spot because they are so tenuous. Surprisingly, stars seem to be forming in this tail.

Webb will target sites of star formation at different points along the tail: close to the galaxy, in the middle, and near the end of the tail. Since material at the tail's end was removed before material close to the galaxy, astronomers can learn how the stripping process changed over time and how that affected conditions to form new stars.

Researchers aren't sure how stars are able to form at all within the tail since the stripping process should have heated the gas. "We think it's hard to strip off a molecular cloud that's already forming stars because it should be tightly bound to the galaxy by gravity. Which means either we're wrong, or this gas got stripped off and heated up, but then had to cool again so that it could condense and form stars," explained Alberts.

"Telling these two scenarios apart is one of the things we want to get at," she added.

Mid-infrared completes the puzzle
The team will examine ESO 137-001 using Webb's Mid-Infrared Instrument (MIRI). MIRI observes infrared light at wavelengths of 5 to 28 microns, a range known as the mid-infrared. MIRI's observations will provide 50 times more spatial detail and 20 times better spectral detail than previous work by other infrared observatories.

MIRI is sensitive to light emitted from hydrogen molecules as well as chemical elements like sulfur and oxygen. MIRI also will detect more complex, sooty molecules of carbon and hydrogen known as polycyclic aromatic hydrocarbons (PAHs), which are signposts of star formation. In addition to learning about the composition of gas and dust within these star-forming regions, astronomers will measure the physical conditions of the gas like temperature and density.

The team will combine the new Webb observations with existing data in visible light, X-rays, and at longer far-infrared wavelengths to get a more complete picture of ESO 137-001 and its environment. "Each different wavelength gives you a piece of the puzzle," said Alberts.

Ultimately, astronomers want to learn more about how stars came to form in the tail. They also want to understand how gas is being stripped from the galaxy, how much is being stripped, and how efficiently it's being removed. This will provide clues to the eventual fate of ESO 137-001 and the question of whether ram pressure stripping will shut down star formation, leaving behind a dead relic filled with aging, red stars.

The observations described here will be taken as part of Webb's Guaranteed Time Observation (GTO) program. The GTO program provides dedicated time to the scientists who have worked with NASA to craft the science and instrument capabilities of Webb throughout its development.

The James Webb Space Telescope will be the world's premier space science observatory when it launches in 2021. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international project led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

This Earth Day, NASA celebrates a new perspective of life found on our planet, motivated by our search for life and habitable worlds in our solar system and beyond, a search in which Webb will be deeply instrumental. Check out the jellyfish-themed poster here


Related Links
James Webb Space Telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
NASA's Webb Telescope Mirrors Utilize Innovative Space Shielding
Greenbelt MD (SPX) Apr 12, 2019
To observe objects in the distant cosmos, and to do science that's never been done before, NASA's James Webb Space Telescopes' scientific instruments need to be cooled down to a temperature so cold, it would freeze the oxygen in Earth's atmosphere solid. Intentionally chilling the telescope mirrors and instruments with innovative technologies and intelligent spacecraft design allows them to be far more sensitive to faint infrared light. Infrared can be described simply as heat, and if Webb's compo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
When debris overwhelms space exploitation

India's ASAT 'Justified'

ESA oversees teaching of Europe's next top solderers

Rocket break-up provides rare chance to test debris formation

STELLAR CHEMISTRY
SLAC develops novel compact antenna for communicating where radios fail

US Army selects Hughes for cooperative effort to upgrades NextGen Friendly Forces System

United Launch Alliance launches WGS-10 satellite for USAF

United Launch Alliance set to launch WGS-10 for US Air Force

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Industry collaboration on avionics paves the way for GAINS navigation demonstration flights

Record-Breaking Satellite Advances NASA's Exploration of High-Altitude GPS

China, Arab states eye closer cooperation on satellite navigation to build "Space Silk Road"

Second GPS III satellite arrives at Cape Canaveral ahead of July launch

STELLAR CHEMISTRY
Japan, US struggle to find crashed jet and its 'secrets'

Boeing awarded $91.2M contract for new computer processors on F-15

Boeing awarded $14B for upgrades to B-1, B-52 Air Force bombers

State Department approves new deal with Taiwan for F-16s

STELLAR CHEMISTRY
Engineers tap DNA to create 'lifelike' machines

Infinite number of quantum particles gives clues to big-picture behavior at large scale

Singapore and Australian scientists build a machine to see all possible futures

European quantum communications network takes shape

STELLAR CHEMISTRY
NASA Invites You to 'Picture Earth' for Earth Day

DLR and the UStuttgart test transmission of EO data using laser communications

UNH researchers find unusual phenomenon in clouds triggers lightning flash

Sun, moon and sea as part of a 'seismic probe'

STELLAR CHEMISTRY
Airborne plastic particles blanket remote mountains: study

Renting flat-pack furniture? Ikea's push to go green

Seals, caviar and oil: Caspian Sea faces pollution threat

Hong Kong admits world's largest air purifier choked on debut









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.