Space Industry and Business News  
EXO WORLDS
It all comes down to the first electron
by Staff Writers
Zurich, Switzerland (SPX) Jan 13, 2022

Concentric iron oxide accumulations around plant roots in a floodplain soil. (Photograph: Andreas Voegelin, Eawag)

Every living thing requires energy. This is also true of microorganisms. This energy is frequently generated in the cells by respiration, that is by the combustion of organic compounds, in other words: food. During this process, electrons are released which the microorganisms then need to get rid of. In the absence of oxygen, microorganisms can use other methods to do so, including transporting the electrons to minerals outside the cells.

Reduction rates vary considerably.
In oxygen-free soils or sediments, iron oxides play a major role as acceptors of the released electrons. But how do the electrons get from respiration in the cells to the iron oxides which are found outside the cells? For this process microorganisms can use special molecules that receive two electrons at the cell surface, and then transport them to the iron oxides like a taxi. There the two electrons alight from the taxi, and reduce trivalent iron in oxides to its divalent form. The taxi is then free to transport more electrons.

These extracellular electron shuttles (EES) have been known about for a long time. Until now, however, it has never been clear why their efficiency is so dependent on their structure and the environmental conditions - and why the speed of the iron oxide reduction varies by several orders of magnitude. All attempts to explain the massive efficiency differences on the basis of known parameters such as pH or temperature have failed until now.

The electrons have to be considered individually
A study by Eawag and ETH Zurich researchers, just published in the journal PNAS, shows how efficiency differences in the EES can be explained by a single, unmistakable relationship. "In our relationship, we didn't look at the average energy of the two transported electrons as has been done up to now, but rather at the individual energy level of each electron," reports Meret Aeppli, lead author of the study. Eawag-environmental chemist Thomas Hofstetter adds: "It turns out that the transfer of the first electron from the EES to the iron oxide is often decidedly less energetically efficient than the transfer of the second."

The researchers have shown that the energy difference between the first electron transferred from the EES to the iron oxide determines the iron reduction rate. Using this concept, it is possible to explain the efficiency differences between various EES, even across a sizeable pH range, as well as between two different iron oxides. Michael Sander from the ETH Zurich explains the process with an analogy: "Under many conditions, the first electron is actually very reluctant to leave the EES taxi, but it is pushed out from the back seat, so to speak, by the second electron."

Electron transfer made visible using UV light
To arrive at their findings, the authors of the study not only devised their own experiments and to collected the resulting data, but also integrated the results of previous studies. For the experiments in the Eawag and the ETH laboratories, the researchers used natural and synthetic EES molecules and investigated two widely available iron(III) oxides.

The rate of electron transfer from the EES to the iron oxide, and thus the efficiency of the electron transport, can be made visible with UV light. This light is absorbed differently by the EES depending on whether they are underway with or without the two electrons.

Tiny but crucial
The study describes just one small step in microbial respiration, but while it may be small, it is critical to many processes. Now that anaerobic respiration of mineral phases using EES is understood at a generic level, comparisons can be made more easily between studies and systems.

This paper is therefore a must-read for anyone working with anaerobically-respiring microorganisms and their carbon exchange. While this step may appear to be a small one, it is nevertheless highly relevant for the understanding of global biogeochemical processes - for example the anaerobic breakdown of organic substances in thawing arctic soilsside, a process in which enormous quantities of climate-critical CO2 are released.

Research Report: "Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles"


Related Links
ETH Zurich
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
New spheres of knowledge on the origin of life
Tsukuba, Japan (SPX) Jan 13, 2022
The shape of a cell affects its physical and chemical properties. Different cell types have developed different shapes to enable effective functioning. But what shape were the very first cells, as life began to evolve? Primitive cells are thought to have been spherical, but experimental evidence supporting this belief remains elusive. Now, however, researchers from the University of Tsukuba, in collaboration with East China Normal University, have shown that E. coli bacteria grown in a primordial- ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
New DAF software factory aims to digitally transform AFRL

US bill aims to end China's 'chokehold' on America's rare earth supplies

Chile court freezes multi-million dollar lithium deal

Using High Temperature Composites For Sustainable Space Travel

EXO WORLDS
SPAINSAT NG program successfully passes Critical Design Review

Honeywell, SES and Hughes demonstrate Multinetwork Airborne Connectivity

Airbus and OneWeb expand their partnership to connect European defence and security forces

SES Government Solutions releases new unified operational network

EXO WORLDS
EXO WORLDS
Arianespace to launch eight new Galileo satellites

Two new satellites mark further enlargement of Galileo

Galileo satellites given green light for launch

Brain and coat from RUAG Space for Galileo navigation satellites

EXO WORLDS
Hong Kong airport bans transit passengers from most of world

Cathay Pacific says crews spent 73,000 nights in quarantine in 2021

Wreck of Taiwan's most advanced fighter jet found after crash

US briefly halted west coast flights after NKorea missile test: FAA

EXO WORLDS
Building a silicon quantum computer chip atom by atom

Organic light emitting diodes operated by 1.5 V battery

Fueling the future with new perovskite-related oxide-ion conductors

Semiconductors reach the quantum world

EXO WORLDS
Copper-based chemicals may be contributing to ozone depletion

Manufacturing revenues for Earth observation to grow to $76.1 billion by 2030

Earth's interior is cooling faster than expected

Arase uncovers Geospace coupling between plasma waves and charged particles

EXO WORLDS
Microplastic pollution linger in rivers for years before entering oceans

Pakistan court orders golf course shut in rare ruling against military

Understanding air pollution from space

France bans plastic packaging for fruit and veg









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.