Space Industry and Business News  
SOLAR DAILY
Invisibility cloak might enhance efficiency of solar cells
by Staff Writers
Karlsruhe, Germany (SPX) Oct 05, 2015


A special invisibility cloak (right) guides sunlight past the contacts for current removal to the active surface area of the solar cell. Image courtesy Martin Schumann, KIT. For a larger version of this image please go here.

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially available photovoltaic cells, for instance, is about 20%. Scientists of Karlsruhe Institute of Technology (KIT) have now published an unconventional approach to increasing the efficiency of the panels. Optical invisibility cloaks guide sunlight around objects that cast a shadow on the solar panel, such as contacts for current extraction. DOI: 10.1364/OPTICA.2.000850.

Energy efficiency of solar panels has to be improved significantly not only for the energy turnaround, but also for enhancing economic efficiency. Modules that are presently mounted on roofs convert just one fifth of the light into electricity, which means that about 80% of the solar energy are lost.

The reasons of these high losses are manifold. Up to one tenth of the surface area of solar cells, for instance, is covered by so-called contact fingers that extract the current generated. At the locations of these contact fingers, light cannot reach the active area of the solar cell and efficiency of the cell decreases.

"Our model experiments have shown that the cloak layer makes the contact fingers nearly completely invisible," doctoral student Martin Schumann of the KIT Institute of Applied Physics says, who conducted the experiments and simulations. Physicists of KIT around project head Carsten Rockstuhl, together with partners from Aachen, Freiburg, Halle, Jena, and Julich, modified the optical invisibility cloak designed at KIT for guiding the incident light around the contact fingers of the solar cell.

Normally, invisibility cloak research is aimed at making objects invisible. For this purpose, light is guided around the object to be hidden. This research project did not focus on hiding the contact fingers visually, but on the deflected light that reaches the active surface area of the solar cell thanks to the invisibility cloak and, hence, can be used.

To achieve the cloaking effect, the scientists pursued two approaches. Both are based on applying a polymer coating onto the solar cell. This coating has to possess exactly calculated optical properties, i.e. an index of refraction that depends on the location or a special surface shape.

The second concept is particularly promising, as it can potentially be integrated into mass production of solar cells at low costs. The surface of the cloak layer is grooved along the contact fingers. In this way, incident light is refracted away from the contact fingers and finally reaches the active surface area of the solar cell (see Figure).

By means of a model experiment and detailed simulations, the researchers demonstrated that both concepts are suited for hiding the contact fingers. In the next step, it is planned to apply the cloaking layer onto a solar cell in order to determine the efficiency increase.

The physicists are optimistic that efficiency will be improved by the cloak under real conditions: "When applying such a coating onto a real solar cell, optical losses via the contact fingers are supposed to be reduced and efficiency is assumed to be increased by up to 10%," Martin Schumann says.

Martin F. Schumann, Samuel Wiesendanger, Jan Christoph Goldschmidt, Benedikt Blasi, Karsten Bittkau, Ulrich W. Paetzold, Alexander Sprafke, Ralf B. Wehrspohn, Carsten Rockstuhl, and Martin Wegener, "Cloaked contact grids on solar cells by coordinate transformations: designs and prototypes," Optica 2, 850-853 (2015)


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Karlsruher Institut fur Technologie (KIT)
All About Solar Energy at SolarDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR DAILY
Finding a way to boost efficiency of CIGS solar cells
Los Angeles CA (SPX) Oct 01, 2015
CIGS (copper-indium-gallium-selenide) solar cells are compound thin-film solar cells and the most established alternative to silicon solar cells. Solar conversion efficiencies of over 20% have recently been achieved in CIGS solar cells. One of the factors known to strongly affect the conversion efficiency is the buffer layer (see Figure 1). However, the structure of the buffer layer and it ... read more


SOLAR DAILY
Thousand-fold fluorescence enhancement in an all-polymer thin film

Australian broadband satellite begins post-launch maneuvers

ESA entrusts Indra with data storage for the Sentinel 2B satellite

WPI team recovers rare earths from electric and hybrid vehicle motors

SOLAR DAILY
LGS Innovations enhances ISR technologies

Harris supplying tactical radios to Special Operations Forces

Skynet 5A satellite move to Asia-Pacific complete

Harris Corporation supplying ground-to-air radios to ANG

SOLAR DAILY
Arianespace signs ARSAT to launch a new satellite for Argentina

Ariane 5 orbits Sky Muster and ARSAT-2

A satellite launcher for the Middle East

45th Space Wing supports ULA's 100th launch

SOLAR DAILY
Galileo satellites handed over to operator

New sports technology provides a GPS alternative

Russia, Brazil Sign Contract for Glonass Ground Measuring Station

DARPA taps Rockwell Collins for GPS backup technologies

SOLAR DAILY
Report: Asia a growing market for light military helicopters

Boeing's digital upgrade of B-52s to be completed soon

F-22 Raptors deploy to Middle East

BAE Systems developing new, digital EW system for F-15s

SOLAR DAILY
New way of retaining quantum memories stored in light

Performance cloning boosts computer chip memory systems design

Semiconductor nanoparticles show high luminescence in a polymer matrix

Researchers grow nanocircuitry with semiconducting graphene nanoribbons

SOLAR DAILY
SMOS meets ocean monsters

Monsoon mission: A better way to predict Indian weather

Satellite Data Helps Migrating Birds Survive

exactEarth Launches Advanced Equatorial AIS Satellite

SOLAR DAILY
Plastic-eating worms to ease pollution problems

US tightens smog standards, environmentalists cry foul

Goods manufactured in China not good for the environment

Singapore moves against Indonesian firms over haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.