Space Industry and Business News  
Invading Black Holes Explain Cosmic Flashes

File image: gamma ray burst.
by Staff Writers
Leeds, UK (SPX) Sep 22, 2009
Black holes are invading stars, providing a radical explanation to bright flashes in the universe that are one of the biggest mysteries in astronomy today.

The flashes, known as gamma ray bursts, are beams of high energy radiation - similar to the radiation emitted by explosions of nuclear weapons - produced by jets of plasma from massive dying stars.

The orthodox model for this cosmic jet engine involves plasma being heated by neutrinos in a disk of matter that forms around a black hole, which is created when a star collapses.

But mathematicians at the University of Leeds have come up with a different explanation: the jets come directly from black holes, which can dive into nearby massive stars and devour them.

Their theory is based on recent observations by the Swift satellite which indicates that the central jet engine operates for up to 10,000 seconds - much longer than the neutrino model can explain.

Mathematicians believe that this is evidence for an electromagnetic origin of the jets, i.e. that the jets come directly from a rotating black hole, and that it is the magnetic stresses caused by the rotation that focus and accelerate the jet's flow.

For the mechanism to operate the collapsing star has to be rotating extremely rapidly. This increases the duration of the star's collapse as the gravity is opposed by strong centrifugal forces.

One particularly peculiar way of creating the right conditions involves not a collapsing star but a star invaded by its black hole companion in a binary system. The black hole acts like a parasite, diving into the normal star, spinning it with gravitational forces on its way to the star's centre, and finally eating it from the inside.

"The neutrino model cannot explain very long gamma ray bursts and the Swift observations, as the rate at which the black hole swallows the star becomes rather low quite quickly, rendering the neutrino mechanism inefficient, but the magnetic mechanism can," says Professor Komissarov from the School of Mathematics at the University of Leeds.

"Our knowledge of the amount of the matter that collects around the black hole and the rotation speed of the star allow us to calculate how long these long flashes will be - and the results correlate very well with observations from satellites," he adds.

The research is published in the Monthly Notices of the Royal Astronomical Society and funded by the Science and Technology Facilities Council in the UK.

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of Leeds
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Is Cygnus X-1 Still A Star
Huntsville AL (SPX) Sep 03, 2009
Since its discovery 45 years ago, Cygnus X-1 has been one of the most intensively studied cosmic X-ray sources. About a decade after its discovery, Cygnus X-1 secured a place in the history of astronomy when a combination of X-ray and optical observations led to the conclusion that it was a black hole, the first such identification. The Cygnus X-1 system consists of a black hole with a mas ... read more







The content herein, unless otherwise known to be public domain, are Copyright 1995-2009 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement