Space Industry and Business News  
TIME AND SPACE
Into the quantum world with a tennis racket
by Staff Writers
Munich, Germany (SPX) Jul 07, 2017


The motion of a tennis racket in the air can help predict the behavior of quanta. While the racket rotates 360 degrees about its lateral axis, the tennis racket effect leads to an unintentional 180-degree flip about its longitudinal axis. The overall rotation leaves the red, bottom side facing upward. Credit Steffen Glaser / TUM

Quantum technology is seen as an important future-oriented technology: smaller, faster and with higher performance than conventional electronics. However, exploiting quantum effects is difficult because nature's smallest building blocks have properties quite distinct from those we know from our everyday world. An international team of researchers has now succeeded in extracting a fault tolerant manipulation of quanta from an effect of classical mechanics.

The motion of a tennis racket in the air can help predict the behavior of quanta. "Using an analogy from classical physics aids us in more efficiently designing and illustrating control elements for phenomena in the quantum world," reports Stefan Glaser, professor in the Department of Chemistry at the Technical University of Munich (TUM).

"Controlling the properties of quanta and using them in technical processes has proven difficult thus far because the quanta adhere to their own laws, which often exceed our imagination," explains the scientist. "Possible applications such as secure networks, highly sensitive measuring equipment and ultrafast quantum computers are thus still in their infancy."

Quanta under control
"Utilizing quantum effects in a technical manner by influencing the behavior of particles through electromagnetic fields required the fastest possible methods to develop fault-tolerant control sequences," says Glaser. "To date, most of the methods build on very complicated computational processes."

Together with an international team of physicists, chemists and mathematicians, the researcher has now discovered an unexpected, promising and novel approach: Using the tennis racket effect, a well-known phenomenon in classical mechanics, the consistent alteration in the spin of quanta via electromagnetic control commands can be visualized.

Tennis racket in motion
The tennis racket effect describes what happens when one tosses a tennis racket into the air while imparting a rotation about an axis. When one spins the racket about its transverse axis a surprising effect appears: In addition to the intended 360-degree rotation about its transverse axis, the racket will almost always perform an unexpected 180-degree flip about its longitudinal axis. When the racket is caught, the initial bottom side will be facing up.

"Responsible for this effect are tiny deviations and perturbations during the toss and the different moments of inertia along the three axes of an asymmetrical body. The effect can also be observed by tossing a book or cell phone into the air - for good measure over a soft bedding - instead of a tennis racket," elucidates Glaser. The longest and shortest axes are stable. However, the intermediate axis, in the case of a tennis racket, the transverse axis, is unstable and even miniscule agitations reliably trigger an additional 180-degree rotation.

Quanta in motion
Quanta also possess angular momentum, known as spin. This can be influenced by applying an electromagnetic field. "The aim of this quantum technique is to change the orientation of the spin in a targeted manner, thereby minimizing errors caused by small perturbations," says Glaser.

"The discovered mathematical analogy between the geometric properties of classical physics pertaining to freely rotating objects and controlling quantum phenomena can now be utilized to optimize the electromagnetic control of quantum states," summarizes co-author Prof. Dominique Sugny. As well as at the French University of Burgundy the scientists works as a Hans Fischer Fellow at the Institute for Advanced Study at TUM.

New, robust models
Using measurements of the nuclear spin, the team could demonstrate experimentally that the tennis racket effect really does improve the robustness of scattering sequences. They have now published their results in the journal "Scientific Reports."

"Based on these research results, we can now develop more efficient mathematical models that allow errors to be avoided when controlling quantum processors," adds Glaser. "Building on the well-understood phenomenon from classical physics, we can not only visualize the development of reliable control sequences in quantum technology, but also accelerate them significantly."

Research Report: Linking the rotation of a rigid body to the Schrodinger equation: The quantum tennis racket effect and beyond

TIME AND SPACE
LHCb tests yield new particle with a pair of heavy quarks
Washington (UPI) Jul 6, 2017
Scientists have announced the discovery of a new particle. Researchers with CERN announced the new particle at the European Physical Society Conference on High Energy Physics, held this week in Venice. Physicists discovered the new particle during LHCb tests at CERN's Large Hadron Collider. The new particle was spotted among the chaos of collisions between b-hadrons, heavy particles fea ... read more

Related Links
Technical University of Munich
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Spacepath Communications Announces Innovative Frequency Converter Systems

WVU to develop software for future NASA Mars rovers, test 3-D printed foams on ISS

Giant enhancement of electromagnetic waves revealed within small dielectric particles

ANU invention may help to protect astronauts from radiation in space

TIME AND SPACE
North Dakota UAS Training Center Depends on IGC Satellite Connectivity

First UAVs, Now Ships - Connectivity for the next generation of remote naval operations

Northrop Grumman receives Australian satellite ground station contract

DISA extends Comtech satellite services to Marines

TIME AND SPACE
TIME AND SPACE
Orbital Alliance Techsystems receives contract for GPS artillery

India Plans to Roll Out National GPS Next Year

Europe's Galileo satnav identifies problems behind failing clocks

New orbiters for Europe's Galileo satnav system

TIME AND SPACE
Singapore developing space-based VHF communications for air traffic management

Sikorsky receives CH-53D contract from Israel for parts, services

Sikorsky awarded $3.8 billion contract for Saudi Arabian black hawks

Boeing announces Rolls-Royce engine contract

TIME AND SPACE
Molecular electronics scientists shatter 'impossible' record

Harnessing hopping hydrogens for high-efficiency OLEDs

High-precision control of printed electronics

Three-dimensional chip combines computing and data storage

TIME AND SPACE
SSL To Provide Next-Generation Imaging Satellite Constellation To Digitalglobe

Can satellites be used as an early warning system for landslides

Study finds Earth's magnetic field 'simpler than we thought'

See our seasons change from space

TIME AND SPACE
Study finds toxic mercury is accumulating in the Arctic tundra

Human activities worsen air quality in Dunhuang, a desert basin in China

Herbicide boost for tadpoles: study

Scientists probe role of sunscreen in accelerating coral reef decline









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.