Space Industry and Business News  
TECH SPACE
Inside tiny tubes, water turns solid when it should be boiling
by Staff Writers
Boston MA (SPX) Nov 29, 2016


A team at MIT has found an unexpected discovery about water: Inside the tiniest of spaces - in carbon nanotubes whose inner dimensions are not much bigger than a few water molecules - water can freeze solid even at high temperatures that would normally set it boiling. The finding might lead to new applications such as ice-filled wires. Image courtesy of the researchers. For a larger version of this image please go here.

It's a well-known fact that water, at sea level, starts to boil at a temperature of 212 degrees Fahrenheit, or 100 degrees Celsius. And scientists have long observed that when water is confined in very small spaces, its boiling and freezing points can change a bit, usually dropping by around 10 C or so.

But now, a team at MIT has found a completely unexpected set of changes: Inside the tiniest of spaces - in carbon nanotubes whose inner dimensions are not much bigger than a few water molecules - water can freeze solid even at high temperatures that would normally set it boiling.

The discovery illustrates how even very familiar materials can drastically change their behavior when trapped inside structures measured in nanometers, or billionths of a meter. And the finding might lead to new applications - such as, essentially, ice-filled wires - that take advantage of the unique electrical and thermal properties of ice while remaining stable at room temperature.

The results are being reported in the journal Nature Nanotechnology, in a paper by Michael Strano, the Carbon P. Dubbs Professor in Chemical Engineering at MIT; postdoc Kumar Agrawal; and three others. "If you confine a fluid to a nanocavity, you can actually distort its phase behavior," Strano says, referring to how and when the substance changes between solid, liquid, and gas phases.

Such effects were expected, but the enormous magnitude of the change, and its direction (raising rather than lowering the freezing point), were a complete surprise: In one of the team's tests, the water solidified at a temperature of 105 C or more. (The exact temperature is hard to determine, but 105 C was considered the minimum value in this test; the actual temperature could have been as high as 151 C.)

"The effect is much greater than anyone had anticipated," Strano says.

It turns out that the way water's behavior changes inside the tiny carbon nanotubes - structures the shape of a soda straw, made entirely of carbon atoms but only a few nanometers in diameter - depends crucially on the exact diameter of the tubes. "These are really the smallest pipes you could think of," Strano says. In the experiments, the nanotubes were left open at both ends, with reservoirs of water at each opening.

Even the difference between nanotubes 1.05 nanometers and 1.06 nanometers across made a difference of tens of degrees in the apparent freezing point, the researchers found. Such extreme differences were completely unexpected. "All bets are off when you get really small," Strano says. "It's really an unexplored space."

In earlier efforts to understand how water and other fluids would behave when confined to such small spaces, "there were some simulations that showed really contradictory results," he says. Part of the reason for that is many teams weren't able to measure the exact sizes of their carbon nanotubes so precisely, not realizing that such small differences could produce such different outcomes.

In fact, it's surprising that water even enters into these tiny tubes in the first place, Strano says: Carbon nanotubes are thought to be hydrophobic, or water-repelling, so water molecules should have a hard time getting inside. The fact that they do gain entry remains a bit of a mystery, he says.

Strano and his team used highly sensitive imaging systems, using a technique called vibrational spectroscopy, that could track the movement of water inside the nanotubes, thus making its behavior subject to detailed measurement for the first time.

The team can detect not only the presence of water in the tube, but also its phase, he says: "We can tell if it's vapor or liquid, and we can tell if it's in a stiff phase."

While the water definitely goes into a solid phase, the team avoids calling it "ice" because that term implies a certain kind of crystalline structure, which they haven't yet been able to show conclusively exists in these confined spaces. "It's not necessarily ice, but it's an ice-like phase," Strano says.

Because this solid water doesn't melt until well above the normal boiling point of water, it should remain perfectly stable indefinitely under room-temperature conditions. That makes it potentially a useful material for a variety of possible applications, he says.

For example, it should be possible to make "ice wires" that would be among the best carriers known for protons, because water conducts protons at least 10 times more readily than typical conductive materials. "This gives us very stable water wires, at room temperature," he says.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Scientists trace 'poisoning' in chemical reactions to the atomic scale
Berkeley CA (SPX) Nov 25, 2016
Researchers have revealed new atomic-scale details about pesky deposits that can stop or slow chemical reactions vital to fuel production and other processes. This disruption to reactions is known as deactivation or poisoning. The research team employed a combination of measurements, including X-ray experiments at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley L ... read more


TECH SPACE
For platinum catalysts, tiny squeeze gives big boost in performance

Ames Laboratory scientists create first intermetallic double salt with platinum

Scientists trace 'poisoning' in chemical reactions to the atomic scale

Destruction Junction-What's Your Function?

TECH SPACE
Intelsat General to provide satellite services to RiteNet for US Army network

NSA gives Type1 certification to Harris radio

Upgraded telecommunications network for Marines

Unfurlable mesh reflectors deploy on 5th MUOS satellite

TECH SPACE
Russia to face strong competition from China in space launch market

Vega And Gokturk-1A are present for next Arianespace lightweight mission

Antares Rides Again

Four Galileo satellites are "topped off" for Arianespace's milestone Ariane 5 launch from the Spaceport

TECH SPACE
Launch of new Galileo navigation quartet

How NASA and John Deere Helped Tractors Drive Themselves

Flying the fantastic four

Russian Space Agency May Launch Up to 4 Glonass Navigation Satellites Next Year

TECH SPACE
Aviation enhancements, better biosensors could result from new sensor technology

Airbus delivers final EC135 T2+ helicopters to Australia

Bell-Boeing team receives $267M modification for MV-22 support

Chinese travel site Ctrip buys Skyscanner for $1.7 bn

TECH SPACE
For wearable electronic devices, NIST shows plastic holes are golden

Spray-printed crystals to move forward organic electronic applications

Making spintronic neurons sing in unison

World's fastest quantum simulator operating at the atomic level

TECH SPACE
NASA Selects Launch Services for Global Surface Water Survey Mission

NASA launches Advanced Geostationary Weather Satellite for NOAA

Who knew? Ammonia-rich bird poop cools the atmosphere

How lightning strikes can improve storm forecasts

TECH SPACE
Europe air pollution causes 467,000 early deaths a year: report

Canada pressed to make clean environment a constitutional right

Study demonstrates potential support for ban on microbeads in cosmetics

New toxicology test could improve USDA, EPA chemical screening









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.