Space Industry and Business News  
Inexpensive Adaptive Optics Achieved By Sandia's Optical Clamp

-
by Staff Writers
Albuquerque NM (SPX) Jul 11, 2007
The ingenious system called adaptive optics, known for its computer control of subdivided, individually angled mirrors, is an efficient but expensive way to correct distortions in laser beams. The mirrors automatically adjust until an undistorted beam is obtained in a way formerly thought unachievable by a single large mirror.

Now a Sandia National Laboratories' tool that efficiently but inexpensively uses a single mirror to achieve some of the same effects has received a U.S. patent, issued June 12.

The Sandia device, which resembles an inexpensive vise similar to those bolted to many home workshop benches, functions as a kind of poor man's adaptive optics. It corrects optical distortions simply through pressure that changes the convexity or concavity of a single reflecting surface.

"We can't compensate for small-scale aberrations," says principal investigator Jens Schwarz, "but certain large-scale beam distortions are correctable with this tool."

Sandia is a National Nuclear Security Administration laboratory.

The method already has improved the beam quality of Sandia's huge Z-Beamlet laser, which can now fire every two hours instead of every four because the device pre-corrects for distortions caused by heat, says Schwarz.

Similar beam corrections, of course, can be achieved from tens to hundreds of thousands of dollars through traditional adaptive optics. Many small reflecting mirrors controlled by a computer can adjust in milliseconds to correct beam distortions reported by sensors farther down the line.

But for the overwhelming majority of laser users who do not need such fine control, deformation of a single mirror through convex or concave deformation applied through only a single actuator may be the ticket, especially when the price is expected to be only a few thousand dollars.

Commercial interest in the inexpensive device already has been expressed.

A reverse use of the technique could deliberately focus the beam to interrogate points of distant interest. This use would detect chemical or biological agents introduced at battlefields many miles away, a technique called laser-induced fluorescence spectroscopy. "Because the mirror can change the focus of a laser beam quickly and rapidly, a laser beam could interrogate molecules at a variety of distances and the results would be visible through backscattered light," Schwarz says.

Coping with distortions in the beam itself

Distortions happen when new energies are injected in the lasing system to create more powerful beams. These injections are achieved by racks of lamps that flare briefly, like old-fashioned photographic flashbulbs, sending an energy pulse into the laser medium of doped glass in which the beam is forming.

When the laser beam traverses the doped glass, it stimulates the material to release energy that adds to the beam's strength, an effect known as gain. But the exterior of the doped glass - closer to the flashlamps - is unavoidably heated more than its interior. This modifies its refractive index, focusing the beam to a point some meters away instead of allowing it to continue to infinity.

Rather than alter the flashlamps or gain medium, Schwarz with the aid of Marc Ramsey and Daniel Headley used a single flexible mirror to pre-correct for the distortion to take place later in the beam's passage.

The corrective effect is achieved by placing a flat mirror between two concentric rings of different sizes, one stationary and the other free. A screw-drive turned either by fingertips or by motor (the motor raises the price) applies a force to the free ring and bends the mirror a few microns, changing its focal length. The orientation of the large and small rings determines whether the distortion is concave or convex.

The method has been shown to work over a wide range of laser beam energies ranging from 30 millijoules to 500 joules.

The motivation for the work, says Schwarz, is that "It's customary to use a static concave mirror - or a combination of appropriate lenses - and hope it's correcting well for distortions in the lensing system you have. But rather than buy a succession of lenses or mirrors, we thought: Let's see if we can do the job more simply and inexpensively by using only one mirror with a flexible focal length."

Descriptions of the work and its applications have been published in the February 2006 Applied Physics B: Lasers and Optics and the November 2006 Optics Express. Other authors in addition to Schwarz, Ramsey and Headley include Ian Smith and John Porter.

The device, listed as a "Variable Focal Length Deformable Mirror" will issue as U.S. Patent No. 7,229,178.

Related Links
Sandia National Laboratories
Nuclear Power News - Nuclear Science, Nuclear Technology
Powering The World in the 21st Century at Energy-Daily.com



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Famous Space Pillars Feel the Heat of Star's Explosion
Pasadena CA (SPX) Jan 10, 2007
The three iconic space pillars photographed by NASA's Hubble Space Telescope in 1995 might have met their demise, according to new evidence from NASA's Spitzer Space Telescope. A new, striking image from Spitzer shows the intact dust towers next to a giant cloud of hot dust thought to have been scorched by the blast of a star that exploded, or went supernova. Astronomers speculate that the supernova's shock wave could have already reached the dusty towers, causing them to topple about 6,000 years ago.







  • Vizada Launches SkyFile Access For Better Mobile Satellite Data Transfer
  • Bringing Mobile Cellular Phones To The Skyways
  • Rockwell Collins And ARINC Sign Agreement For Broadband Offering
  • Academic Group Releases Plan To Share Power Over Internet Root Zone Keys

  • Russia Proton-M Booster Puts US Satellite Into Orbit
  • From Under The Sea And Into Space
  • China Launches Thales-built Chinasat 6B Telecommunication Satellite
  • Boeing Lockheed Rocketeers Turn To SAP For Bettter ERP

  • Boeing Awarded Two Billion Dollar A-10 Wing Contract
  • Raytheon Awarded Rolling Airframe Missile Contracts Valued At Nearly 146 Million Dollars
  • Europe Bans All Indonesian Airlines From EU Airspace
  • France Supports Cap On Airline Carbon Emissions

  • A-10s Get Digital Makeover
  • TSAT Team Demonstrates Technology Maturity Of Laser Communications Subsystem
  • Boeing Showcases Operational TSAT System During Critical Review
  • Lockheed Martin Shifts Into Production Phase Of Navy Narrowband Tactical Satellite

  • NASA Harnesses Power Of Virtual Worlds For Exploration And Outreach
  • Stardust And Deep Impact Get New Assignments Cruising About Sol
  • Warner Goes Digital To Bring New Life To Films
  • The Adventures Of ASTRO And NextSat

  • Hall Appoints Feeney To Top GOP Position On Space And Aeronautics Subcommittee
  • Dodgen Joins Northrop Grumman As Vice President Of Strategy For Missile Systems Business
  • Townsend To Lead Ball Aerospace Exploration Systems In Huntsville
  • NASA Nobel Prize Recipient To Lead Chief Scientist Office

  • GOP House Science Committee To Evaluate NASA Earth Science Budget
  • Subcommittee Continues Look At Status of NASA Earth Science Programs
  • QuikSCAT Marks Eight Years On-Orbit Watching Planet Earth
  • Ukraine To Launch Earth Observation Satellite In 2008

  • Pseudo-Satellites Allow Accurate Navigation In Helsinki Harbour
  • Cooperation Agreement For Satellite Navigation In Africa
  • ESA Launches New Program For Air Traffic Management Via Satellite
  • GPS Wing At LA Air Force Base Changes Command

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement