Space Industry and Business News  
TECH SPACE
Indented cement shows unique properties
by Staff Writers
Houston TX (SPX) Jul 24, 2017


Indented tobermorite, a natural analog to the calcium-silicate-hydrate mix in cement, responds differently than bulk tobermorite, depending on the size of the indentation and the force. Layers that bond through indentation remain that way after the force is removed, according to Rice University engineers. Credit Lei Ren/Rice University

Rice University scientists have determined that no matter how large or small a piece of tobermorite is, it will respond to loading forces in precisely the same way. But poking it with a sharp point will change its strength.

Tobermorite is a naturally occurring crystalline analog to the calcium-silicate-hydrate (C-S-H) that makes up cement, which in turn binds concrete, the world's most-used material. A form of tobermorite used by ancient Romans is believed to be a key to the legendary strength of their undersea concrete structures.

The finely layered material will deform in different ways depending on how standard forces - shear, compression and tension - are applied, but the deformation will be consistent among sample sizes, according to Rice materials scientist Rouzbeh Shahsavari. He conducted the research, which appears in Nature's open-access Scientific Reports, with lead author and graduate student Lei Tao.

For their latest survey, Shahsavari and Tao built molecular dynamics models of the material. Their simulations revealed three key molecular mechanisms at work in tobermorite that are also likely responsible for the strength of C-S-H and other layered materials. One is a mechanism of displacement in which atoms under stress move collectively as they try to stay in equilibrium. Another is a diffusive mechanism in which atoms move more chaotically. They found that the material maintains its structural integrity best under shear, and less so under compressive and then tensile loading.

More interesting to the researchers was the third mechanism, by which bonds between the layers were formed when pressing a nanoindenter into the material. A nanoindenter is a device (simulated in this case) used to test the hardness of very small volumes of materials.

The high stress at the point of indentation prompted local phase transformations in which the crystalline structure of the material deformed and created strong bonds between the layers, a phenomenon not observed under standard forces. The strength of the bond depended on both the amount of force and, unlike the macroscale stressors, the size of the tip.

"There is significant stress right below the small tip of the nanoindenter," Shahsavari said. "That connects the neighboring layers. Once you remove the tip, the structure does not go back to the original configuration. That's important: These transformations are irreversible.

"Besides providing fundamental understanding on key deformation mechanisms, this work uncovers the true mechanical response of the system under small localized (versus conventional) loads, such as nanoindentation," he said. "If changing the tip size (and thus the internal topology) is going to alter the mechanics - for example, make the material stronger - then one might use this feature to better design the system for particular localized loads."

Shahsavari is an assistant professor of civil and environmental engineering and of materials science and nanoengineering.

The National Science Foundation (NSF) supported the research. Computing resources were supplied by the National Institutes of Health and an IBM Shared University Research award in partnership with CISCO, Qlogic and Adaptive Computing and Rice's NSF-supported DAVinCI supercomputer administered by Rice's Center for Research Computing; the resources were procured in partnership with Rice's Ken Kennedy Institute for Information Technology.

Research paper

TECH SPACE
A plastic planet
Santa Barbara CW (SPX) Jul 21, 2017
More than 8 billion metric tons. That's the amount of plastic humans have created since the large-scale production of synthetic materials began in the early 1950s. It's enough to cover the entire country of Argentina, and most of the material now resides in landfills or in the natural environment. Such are the findings of a new study led by UC Santa Barbara industrial ecologist Roland Geye ... read more

Related Links
Rice University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
JV with Russia to build up to 50 satellite solid-state power amplifiers

NASA enhances online scientific tool used by hundreds Worldwide

Making polymer chemistry 'click'

ARCTEC receives contract for Air Force radar sites in Alaska

TECH SPACE
SES Government Solutions lands additional MEO Beam task order with DoD

New combat survival radio by General Dynamics

Rockwell Collins to support avionics for 160th 'Night Stalkers' aviation regiment

82nd Airborne tests in-flight communication system for paratroopers

TECH SPACE
TECH SPACE
IAI, Honeywell Aerospace team for GPS anti-jam system

Russia, China to Set Up Pilot Zone to Test National Navigation Systems

India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

TECH SPACE
Supersonic technology designed to reduce sonic booms

Bankrupted Russian firm's jets may become Air Force One

Lockheed receives contract 50 F-35s for foreign military sales

Switzerland approved for F/A-18 upgrade package

TECH SPACE
Thinking thin brings new layering and thermal abilities to the semiconductor industry

Saelig introduces Sol Chip autonomous, solar-powered sensor station

Ultracold molecules hold promise for quantum computing

Hamburg researchers develop new transistor concept

TECH SPACE
Vega orbits two Earth observation satellites

Aalto-1 satellite sends first image back to VTT Finland

Nickel key to Earth's magnetic field, research shows

NASA Solves a Drizzle Riddle

TECH SPACE
Pollution clouds Gambia's efforts to woo China

'Omnipresent' effects of human impact on England's landscape revealed

Gambian environmentalists to sue 'polluting' Chinese firm

Environmental toxins are impacting Lake Baikal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.