Space Industry and Business News  
SOLAR DAILY
Increasing efficiency in two-terminal tandem solar cells
by Staff Writers
Bellingham WA (SPX) Feb 18, 2022

stock illustration only

Solar photovoltaics (PV) is a major stepping-stone in our transition towards a sustainable energy economy. The International Renewable Energy Agency (IRENA) roadmap suggests that by 2050, electricity generation from PV should reach 43 percent of the total installed power capacity. This can be turned into reality by reducing the cost of PV systems and increasing the efficiency of solar cells, which would enable large-scale installations of compacts PV.

To this end, a recent study published in the Journal of Photonics for Energy (JPE) explores the efficiency gain provided by tandem solar cells in which multiple semiconductors with different energy gaps are stacked atop one another, with a spectral splitter introduced between the top and bottom terminals.

Why this particular design? It turns out that tandem solar cells are sensitive to a broader region of the sunlight's spectrum. This sensitivity allows them to harvest light efficiently and potentially reach an overall efficiency higher than the theoretical limit of conventional solar cells.

However, they typically suffer from inefficient light trapping and management caused by parasitic light absorption in inactive layers and reflection between layers. Recent studies have addressed these issues, yet the concept of distributing sunlight in the tandem subcells with controlled spectral splitting is underexplored.

This is where a team of scientists from The Netherlands, who performed the study, comes in. They designed a two-terminal tandem solar cell with a perovskite top cell and silicon bottom cell and inserted spectral splitters between them. "In PV research, every digit that can be gained in cell efficiency is crucial.

Adding a spectrum splitting interlayer can help us harvest the maximum current and voltage by splitting the incident sunlight into low- and high-energy spectral bands and distributing them effectively among the top and bottom cells," explains Albert Polman of NOW-Institute AMOLF, who led the study.

Polman notes that introducing spectral splitters can also lead to cheaper solar cells, higher throughput in fabrication, and lower toxicity per unit cell area. Additionally, they can expand the scope of tandem cells for applications in photoelectrochemical splitting of water.

Polman's team considered two kinds of spectral splitters, namely "planar" and "Lambertian" splitters, in their study. The planar splitter acts like a mirror, reflecting the light straight back to the top cell to allow it to be absorbed there. In contrast, the Lambertian splitter reflects light in an angular fashion so that it has to complete a much longer path through the solar cell, and hence can be absorbed more easily.

According to their calculations, in the presence of a spectral splitter, industrially applicable top cells with energy gaps of 1.7 eV and higher showed a 5 to 6 percent gain in absolute efficiency in the limit of infinite thickness for a 500 nm thick top cell. Moreover, their predictions revealed that choosing a Lambertian spectral splitter over a planar splitter significantly improves the efficiency enhancement.

While the team's study is theoretical, the results are economically interesting. Provided there is no significant splitting performance loss with upscaling, and the fabrication steps are of similar costs, the efficiency gain per layer of the perovskite/silicon tandem with a Lambertian spectral splitter is within an economically competitive range.

Siva Sivoththaman, Associate Editor of JPE and Director of the University of Waterloo's Centre for Advanced Photovoltaic Devices, notes that the paper makes a timely and novel contribution to photovoltaic cell architectures based on perovskite/silicon tandems.

More specifically, "The idea put forward on embedded spectrum splitters is theoretically shown to result in significant efficiency gains, pushing the thermodynamic limits upward. Although a theoretical work, experimental parameters were used to reliably show how the Lambertian spectral splitter benefits structures with high-bandgap top cells."

Solar cells may still have a long way to go before they replace conventional energy sources. But this study offers hope for their success in the future.

Research Report: "Detailed-balance efficiency limits of two-terminal perovskite/silicon tandem solar cells with planar and Lambertian spectral splitters"


Related Links
SPIE--International Society for Optics and Photonics
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Disorder-engineered inorganic nanocrystals set a new efficiency record for ultrathin solar cells
Castelldefels, Spain (SPX) Feb 15, 2022
Displayed over roof tops and in solar farms, silicon-based solar cells are, so far, one of the most efficient systems in generating electricity from sunlight, but their fabrication can be expensive and energy demanding, aside from being heavy and bulky. The alternative solution of lower-cost thin film solar cells also brings the caveat of being mainly composed of toxic elements such as lead or cadmium, or containing scarce elements such as indium or tellurium. In the search for new technologies fo ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Only nine percent of plastic recycled worldwide: OECD

Upcycling plastic into valuable materials could make recycling pay

Meta lays out moves being made to build the metaverse

New imager microchip helps devices bring hidden objects to light

SOLAR DAILY
Lockheed Martin to prototype new US Marine Corps 5G communications system

Raytheon Intelligence and Space completes Next Gen OPIR GEO Block 0 Milestone

Northrop Grumman and Kratos Demonstration Brings JADC2 Connectivity to Life

DARPA researchers use light on chip to drive next-generation RF Platforms

SOLAR DAILY
SOLAR DAILY
China completes health check on BDS satellite constellation

Providing GPS-quality timing accuracy without GPS

Arianespace to launch eight new Galileo satellites

Two new satellites mark further enlargement of Galileo

SOLAR DAILY
NASA invites collaboration to define future of air travel

Japan recovers second body from crashed F-15

NASA's X-59 Calls on Texas for Key Testing

Quarterly AFTC-AFRL Summit aims to get warfighters "ready to go fast"

SOLAR DAILY
Are fault-tolerant quantum computers on the horizon?

Nanoantennas for light controlled electrically

Piezoelectric thin film and metasurfaces combined to create lens with tunable focus

Perovskites used to make efficient artificial retina

SOLAR DAILY
NOAA's GOES-T Satellite Road to Launch: Final Preparations

China's land-observing satellite starts to take pictures

Magellan Aerospace to supply subsystems for CHORUS EO Satellite

Spire Global awarded NOAA contract to deliver satellite weather data

SOLAR DAILY
Sri Lanka completes return of illegal waste to Britain

Fast-fashion fallout: young people in UK spurred into sewing

Plastic, chemical pollution beyond planet's safe limit: study

Tunisia to return illegally imported waste to Italy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.