Space Industry and Business News
SOLAR DAILY
Improving organic solar cell efficiency through molecular engineering
marker illustration only
Improving organic solar cell efficiency through molecular engineering
by Staff Writers
Beijing, China (SPX) Oct 16, 2023

Polymer solar cells are lightweight, flexible solar panels that can be used for wearable devices. However, toxic halogenated processing solvents used during manufacturing of these solar cells have limited their widespread adoption. Alternatives to halogenated processing solvents are not nearly as soluble, thus requiring higher temperatures and longer processing times. Finding a way to remove the need for the halogenated processing solvents could improve organic solar cell efficiency and make polymer solar cells a viable option for wearable devices.

In a recently published paper, researchers outline how improving molecular interactions between the polymer donors and the small molecule acceptors using side-chain engineering can reduce the need for halogenated processing solvents.

"Blend morphology of polymer donors and small molecule acceptors are highly affected by their molecular interactions, which can be determined by interfacial energies between the donor and acceptor materials. When their surface tension values are similar, the interfacial energies and molecular interactions between the donors and the acceptors are expected to be more favorable," said Yun-Hi Kim, a professor at Gyeongsang National University in Jinju, Republic of Korea. "To enhance the hydrophilicity of the polymer donors and reduce molecular demixing, side-chain engineering can be a plausible avenue."

Side-chain engineering is when a chemical group, called a side chain, is added to the main chain of a molecule. The chemical groups in the side chain affect the properties of the larger molecule. Researchers theorized that adding oligoethylene glycol (OEG)-based side chains would improve the hydrophilicity of the polymer donors thanks to the oxygen atoms in the side chains. A molecule with hydrophilicity is attracted to water. Differences in the hydrophilicity of the polymer donors and the small molecule acceptors can impact how they interact. With increased hydrophilicity of the polymer donors and improved interactions between them and the small molecule acceptors, non-halogenated processing solvents can be used without sacrificing the performance of the solar cell. In fact, polymer solar cells made with OEG-based side chains attached to a benzodithiophene-based polymer donor had a higher power conversion efficiency at 17.7% compared to 15.6%.

In order to compare results, researchers designed benzodithiophene-based polymer donors with either an OEG side chain, hydrocarbon side chains, or side chains that were 50% hydrocarbon and 50% OEG. "This elucidated the effect of side-chain engineering on blend morphology and performance of non-halogenated solvent-processed polymer solar cells," said Kim. "Our findings demonstrate that polymers with hydrophilic OEG side chains can enhance the miscibility with small molecule acceptors and improve power conversion efficiency and device stability of polymer solar cells during non-halogenated processing."

In addition to improved power conversion efficiency, the polymer solar cells with the OEG-based side chains had enhanced thermal stability. Thermal stability is essential for scaling polymer solar cells, so researchers heated them to 120 degrees Celsius and then compared the power conversion efficiency. After 120 hours of heating, the polymers with the hydrocarbon side chains had only 60% of its initial power conversion efficiency and had irregularities on its surface, while the blend of hydrocarbon and OEG retained 84% of its initial power conversion efficiency.

"Our results can provide a useful guideline for designing polymer donors that produce efficient and stable polymer solar cells using non-halogenated solvent processing," said Kim.

Other contributors include Soodeok Seo, Jin Su Park, and Bumjoon J. Kim of the Korea Advanced Institute of Science and Technology; Jun-Young Park and Do-Yeong Choi of Gyeongsang National University; and Seungjin Lee of the Korea Research Institute of Chemical Technology.

The Korea Institute of Energy Evaluation and Planning and the Korean National Research Foundation funded this research.

Research Report:Polymer donors with hydrophilic side-chains enabling efficient and thermally-stable polymer solar cells by non-halogenated solvent processing

Related Links
Tsinghua University
All About Solar Energy at SolarDaily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
SOLAR DAILY
Pioneering Research Enhances PbSe Quantum Dots for Solar Spectrum Harvesting
Sydney, Australia (SPX) Nov 12, 2023
In the ever-evolving landscape of photovoltaic technology, a significant advancement has emerged from the collaborative efforts of researchers at Wuhan Institute of Technology (WIT) and Huazhong University of Science and Technology (HUST) in China. Dr. Jungang He of WIT and Prof. Kanghua Li of HUST have made a groundbreaking contribution to the field of quantum dot photovoltaics, focusing on the enhancement of electron transport layers (ETLs) through F-passivated ZnO. At the core of photovoltaic p ... read more

SOLAR DAILY
Nations start negotiations over global plastics treaty

EU agrees plan to secure raw materials supply

'Call of Duty', the stalwart video game veteran, turns 20

World-first Zero Debris Charter goes live

SOLAR DAILY
Intelsat Secures Pioneering SATCOM Managed Service Pilot Contract with US Army

Northrop Grumman Finalizes Key Trials for Arctic Communications Satellites

Lockheed Martin Showcases Hybrid 5G-Tactical Network in Multi-Domain Field Test

SDA Awards Northrop Grumman $732 Million Satellite Contract

SOLAR DAILY
SOLAR DAILY
PASSport project testing

Zephr raises $3.5M to bring next-gen GPS to major industries

Satnav test on remote island lab

Trimble and Kyivstar to provide GNSS correction services in Ukraine

SOLAR DAILY
Netherlands shelves plan to cut Schiphol flights

Advancing Technology for Aeronautics

First F-16 jets sent to Romania to train Ukrainian pilots: Dutch

AFRL announces Airlift Challenge, AI-Based Planning Competition

SOLAR DAILY
First 2D semiconductor with 1000 transistors developed at EPFL Switzerland

Atomic dance gives rise to a magnet

TU Delft researchers discover new ultra strong material for microchip sensors

A superatomic semiconductor sets a speed record

SOLAR DAILY
NASA maps minerals and ecosystem function across US southwest

China releases methane control plan with no reduction target

TelePIX and Thrusters Unlimited to sell Geo-Info solutions across Latin America and Caribbean

2023 Ozone Hole Ranks 16th Largest, NASA and NOAA Researchers Find

SOLAR DAILY
Battle looms over renewed plastic treaty negotiations

Hundreds of activists demand plastic action in Kenya

South Africa deploys military to tackle illegal mining

'Like breathing poison': Delhi children hardest hit by smog

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.