Space Industry and Business News  
TIME AND SPACE
Improving benchtop particle accelerators
by Staff Writers
Washington DC (SPX) Mar 28, 2016


This image shows the self-generated magnetic field strength of a symmetric laser pulse (a) and an asymmetric laser pulse (b), given the same laser strength and plasma density characteristics. The maximum magnitude of the magnetic field is about 15 Tesla for the asymmetric pulse, compared to 6 Tesla for the symmetric pulse. Image courtesy Gupta, et al/ JAP. For a larger version of this image please go here.

The Large Hadron Collider (LHC), which helped scientists discover the Higgs boson, is a huge instrument buried under the Swiss-French border. It needs 27 kilometers of track to accelerate particles close to the speed of light before smashing them together. Yet there's another type of particle accelerator, called a laser wakefield accelerator, that requires only a fraction of the distance of conventional accelerators like the LHC.

Now researchers from India and South Korea have proposed a new way to improve the beam quality of laser wakefield accelerators, sometimes called benchtop accelerators because they can fit on a standard laboratory table.

Because laser wakefied accelerators are a fraction of the size and cost of convention accelerators, they could bring high energy physics experiments to more labs and universities, and produce charged particles for medical treatments. Improving the beam quality could improve the effectiveness of the devices. The researchers describe their method in a paper in the Journal of Applied Physics, from AIP Publishing.

Conventional particle accelerators use electric fields or radio waves to accelerate bunches of charged particles. Laser wakefield accelerators operate on a very different principle. The laser in the laser wakefield accelerator sends a pulse through a diffuse plasma. Plasma is a state of matter that contains positive ions and free electrons. The laser pulse excites waves in the plasma.

The waves, in turn, create an electric field, also known as a laser wakefield, that traps electrons and accelerates them to energy levels up to the order of gigaelectronvolts. In comparison, the LHC, the world's most powerful particle accelerator, can accelerate particles to energy levels of teraelectronvolts (1000 gigaelectronvolts).

The Indian and South Korean research team identified a technique they think could increase the number of electrons trapped in the wake of the laser pulse, and therefore improve the beam quality of laser wakefield accelerators.

The finding could improve technology for future accelerators, said Devki Nandan Gupta, a physicist at the University of Delhi in India and a member of the team.

In addition to an electric field, plasma-laser interactions can generate a magnetic field. When a laser pulse propagates through a plasma, the electric field of the laser pulse pushes the electrons around. If there is a net electron current within the pulse, it generates a magnetic field.

Gupta and his colleagues analysed laser-plasma dynamics using 2D computer simulations and found that if the plasma density varies and if the laser pulse compresses at the front so that it is asymmetric, both factors produce a larger magnetic field.

"Our study might be helpful in improving the beam quality of the laser wakefield accelerators," Gupta said. "The self-generated magnetic field bends the trajectory of the outgoing electrons towards the plasma wake, consequently the total number of trapped charge particles in the plasma wake increases and hence the total charge in the accelerated bunch in the laser wakefield acceleration increases."

Plasma-based accelerators require approximately 1000 times less distance than standard particle accelerators to achieve a comparable particle energy level. However, the technology is still in the developmental stage. Experimental plasma accelerators have been built in some national labs and universities and the technology continues to improve.

Gupta and his colleagues hope their work could facilitate the next generation of plasma accelerators. "The next step would be to justify these results in three-dimensional geometry. Of course, we may think to test these results experimentally in future as well," he said.

Research paper: "Large-scale magnetic field generation by asymmetric laser-pulse interactions with a plasma in low-intensity regime," is authored by K. Gopal, D. N. Gupta, Y. K. Kim, M. S. Hur and H. Suk. It will be published in the Journal of Applied Physics on March 22, 2016 (DOI: 10.1063/1.4943180).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Theoretical physics discovery to set the research field buzzing
Cincinnati OH (SPX) Mar 21, 2016
Bazinga! University of Cincinnati theoretical physicists are about to report on a controversial discovery that they say contradicts the work of researchers over the decades. The discovery concerns the conventional approach toward bosonization-debosonization. For folks outside the physics lab and the whiteboard, this could affect calculations regarding the future of quantum computers as wel ... read more


TIME AND SPACE
Lehigh scientists extend the reach of single crystals

A new-structure magnetic memory device developed

Detecting radioactive material from a remote distance

The quest for spin liquids

TIME AND SPACE
In-orbit delivery of Laos' 1st satellite launched

Upgrade set for Britain's tactical communications system

Airbus continues operating German military satellites

BAE Systems supports Navy communications and electronics

TIME AND SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

TIME AND SPACE
ISRO Developing 'Front-End Chip' for Satellite Navigation System

India to Launch Sixth Navigational Satellite on Thursday

Lockheed Martin building next generation of military GPS satellites

Traffic app says not at fault for Israel troops losing way

TIME AND SPACE
Mozambique debris 'almost certainly from MH370'

Mozambique debris 'almost certainly from MH370': Australia

MH370 analysis starts on debris: Australia

South Africa examines debris for possible MH370 links

TIME AND SPACE
Making electronics safer with perovskites

Replacement for silicon devices looms big with ORNL discovery

DNA 'origami' could help build faster, cheaper computer chips

Magnetic chips could dramatically increase energy efficiency of computers

TIME AND SPACE
Russia Prepared to Offer Launch Options for Morocco's Satellite

Jason-3 Begins Mapping Oceans, Sees Ongoing El Nino

Satellites to help check unauthorised construction at monuments

Improving farm and water management with DMC constellation

TIME AND SPACE
Beirut trash clean-up begins as critics cry foul

Mercury rising?

'Chemical Chernobyl': activists say toxic dump threatens St. Petersburg

Mexico City lifts air pollution alert









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.