Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
IceCube provides proof of neutrinos from the cosmos
by Staff Writers
Mainz, Germany (SPX) Nov 26, 2013


View over the ice at the geographic South Pole to the above-ground measuring station for the IceCube experiment. The data from the photo sensors embedded in the ice are extracted and analyzed in computer farms. The picture comes from the dusk phase during the transition from the Antarctic winter (sun below the horizon) to the Antarctic summer (sun above the horizon). Image courtesy Sven Lindstrom, IceCube/NSF.

The IceCube Neutrino Observatory at the South Pole was the first to discover ultrahigh-energy neutrinos which most likely were the result of cosmic acceleration in outer space. "After more than a decade of intense searching, we can now announce that we have found neutrinos that were very probably generated in the vast expanses of outer space", reported Professor Lutz Kopke of Johannes Gutenberg University Mainz (JGU).

Neutrinos are electrically neutral particles with tiny mass. High-energy neutrinos may be generated in the proximity of black holes and are subsequently accelerated to acquire their extraordinary energies. They can then travel through space almost completely unhindered. On the downside, they are very difficult to detect.

The IceCube experiment has now found 28 neutrinos with energy greater than 50 tera-electron volts (TeV) all of which landed in the Antarctic ice between May 2010 and May 2012.

"This discovery was one of the key objectives of the IceCube experiment. It is fantastic that we have now reached this milestone, and in a way it is a relief as well," said Kopke, who has been searching for astrophysical neutrinos for more than 13 years and served as an internal reviewer as the final analysis was scrutinized.

The IceCube Neutrino Observatory is composed of 5,160 optical sensors placed in the Antarctic ice. Together they cover one cubic kilometer of clear South Polar ice. The high-precision optical sensors can detect weak flashes of blue light, also known as Cherenkov radiation, which is generated if neutrinos react near a detector and produce charged particles.

The detector was completed in late 2010 and provides data around the clock. It is currently the largest facility designed to search for neutrinos from outer space.

Even though a few neutrinos were discovered in 1987 after the explosion of a supernova in the Large Magellanic Cloud, their energy was about a million times less than the particles that were just?discovered.

"Some of the neutrinos we have now detected have a thousand times more energy than neutrinos created in particle accelerators on earth," explained Kopke. "Only a third of the 28 high-energy neutrinos could have been generated by cosmic radiation in the Earth's atmosphere."

Unlike light, neutrinos can penetrate space dust unhindered and can even penetrate our planet Earth. In doing so, neutrinos provide information about their far-away sources. The highest energy neutrinos can be detected with IceCube, regardless of the direction they came from.

"Over the next ten years we will continue to gather data which will tell us more about the origin of cosmic radiation and the unique properties of the neutrinos," said Kopke.

Billions of neutrinos penetrate every square centimeter of the Earth. Most are generated in the sun or in the Earth's atmosphere, which is constantly being bombarded with cosmic radiation. Neutrinos from further afield inside or outside of our galaxy are much rarer.

The existence of such neutrinos and the process that leads to their creation in the proximity of supernovas, black holes, pulsars, active galaxies, or other extreme extra-galactic phenomena have been discussed in many scientific papers. The IceCube Observatory was specifically developed to examine the frequency and type of high-energy neutrinos as well as to gain an understanding of their origins.

The findings with a significance greater than four standard deviations now published in Science illustrate that the neutrinos observed have properties that clearly indicate an origin in cosmic accelerators.

"The decisive analysis was carried out by a group of postdoctoral researchers and doctoral candidates at the University of Wisconsin in Madison, Wisconsin, USA, two of whom were German. Work is now being done to improve the precision of the observations and to understand what the signal means and where it comes from," explained Kopke.

The IceCube Neutrino Observatory at the geographic South Pole was completed in December 2010 after seven years of construction, on time and within budget. The American National Science Foundation (NSF) financed the instrumentation and the German Federal Ministry of Education and Research (BMBF) provided sizable funding for the experiment and the scientific personnel needed to conduct it.

The project includes 250 physicists from the US, Germany, Sweden, Belgium, Switzerland, Japan, Canada, New Zealand, Australia, the United Kingdom, and Korea. Professor Lutz Kopke's work group at Mainz University is part of the "Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) Cluster of Excellence.

.


Related Links
Johannes Gutenberg University Mainz
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
IceCube pushes neutrinos to the forefront of astronomy
Madison WI (SPX) Nov 25, 2013
The IceCube Neutrino Observatory, a particle detector buried in the Antarctic ice, is a demonstration of the power of the human passion for discovery, where scientific ingenuity meets technological innovation. Today, nearly 25 years after the pioneering idea of detecting neutrinos in ice, the IceCube Collaboration announces the observation of 28 very high-energy particle events that constitute t ... read more


TIME AND SPACE
What might recyclable satellites look like?

Overcoming Brittleness: New Insights into Bulk Metallic Glass

SlipChip Counts Molecules with Chemistry and a Cell Phone

NASA Instrument Determines Hazards of Deep-Space Radiation

TIME AND SPACE
Intelsat General To Provide Satellite Services To US Marines

Manpack Radios in Arctic Connect with MUOS Satellites Orbiting Equator

Self-correcting crystal may unleash the next generation of advanced communications

Northrop Grumman Receives Contract to Sustain Joint STARS Fleet

TIME AND SPACE
Stepping up Vega launcher production

Czech and XCOR Sign Payload Integrator Agreement for Suborbital Flights

Spaceflight Deploys Planet Labs' Dove 3 Spacecraft from the Dnepr

Arianespace orders ten new Vega launchers from ELV

TIME AND SPACE
CIA, Pentagon trying to hinder construction of GLONASS stations in US

GPS 3 Prototype Communicates With GPS Constellation

Russia to enforce GLONASS Over GPS

How pigeons may smell their way home

TIME AND SPACE
The secrets of owls' near noiseless wings

Japanese airlines say will obey China's air zone rules

Peru boosts defense with tactical aircraft, helos

Algorithms + FA-18 Jet = Vital Testing for SLS Flight Control System

TIME AND SPACE
Chaotic physics in ferroelectrics hints at brain-like computing

Nature: Single-atom Bit Forms Smallest Memory in the World

Virtual Toothpick Helps Technologist 'Bake' the Perfect Thin-Film Confection

New way to dissolve semiconductors holds promise for electronics industry

TIME AND SPACE
LETI Magnetometers Will Expand Understanding of Magnetic Field

Satellites to probe Earth's strange shield

Free access to Copernicus Sentinel satellite data

China launches remote-sensing satellite

TIME AND SPACE
Madrid street-sweepers call off strike: union

Everyday chemical exposure linked to preterm births

Albania refuses to host Syria arsenal destruction

Protests grow in Albania against Syria weapons destruction




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement