Subscribe free to our newsletters via your
. Space Industry and Business News .




TIME AND SPACE
ICARUS neutrino experiment to move to Fermilab
by Staff Writers
Batavia IL (SPX) Apr 24, 2015


A view of the top of the ICARUS detector in place at INFN's Gran Sasso National Laboratory in Italy. The 760-ton detector has been removed from Gran Sasso and shipped to CERN for upgrades, and will come to Fermilab in 2017 to become part of the laboratory's short-baseline neutrino program. Image courtesy INFN. For a larger version of this image please go here.

A group of scientists led by Nobel laureate Carlo Rubbia will transport the world's largest liquid-argon neutrino detector across the Atlantic Ocean to its new home at the U.S. Department of Energy's Fermi National Accelerator Laboratory.

The 760-ton, 65-foot-long detector took data for the ICARUS experiment at the Italian Institute for Nuclear Physics' (INFN) Gran Sasso National Laboratory in Italy from 2010 to 2014, using a beam of neutrinos sent through the Earth from CERN. The detector is now being refurbished at CERN, where it is the first beneficiary of a new test facility for neutrino detectors.

When it arrives at Fermilab, the detector will become part of an on-site suite of three experiments dedicated to studying neutrinos, ghostly particles that are all around us but have given up few of their secrets.

All three detectors will be filled with liquid argon, which enables the use of state-of-the-art time projection technology, drawing charged particles created in neutrino interactions toward planes of fine wires that can capture a 3-D image of the tracks those particles leave. Each detector will contribute different yet complementary results to the hunt for a fourth type of neutrino.

"The liquid-argon time projection chamber is a new and very promising technology that we originally developed in the ICARUS collaboration from an initial table-top experiment all the way to a large neutrino detector," Rubbia said. "It is expected that it will become the leading technology for large liquid-argon detectors, with its ability to record ionizing tracks with millimeter precision."

Fermilab operates two powerful neutrino beams and is in the process of developing a third, making it the perfect place for the ICARUS detector to continue its scientific exploration. Scientists plan to transport the detector to the United States in 2017.

A planned sequence of three liquid-argon detectors will provide new insights into the three known types of neutrinos and seek a yet unseen fourth type, following hints from other experiments over the past two decades.

Many theories in particle physics predict the existence of a so-called "sterile" neutrino, which would behave differently from the three known types and, if it exists, could provide a route to understanding the mysterious dark matter that makes up 25 percent of the universe. Discovering this fourth type of neutrino would revolutionize physics, changing scientists' picture of the universe and how it works.

"The arrival of ICARUS and the construction of this on-site research program is a lofty goal in itself," said Fermilab Director Nigel Lockyer. "But it is also the first step forward in Fermilab's plan to host a truly international neutrino facility, with the help of our partners from around the world. The future of neutrino research in the United States is bright."

Fermilab's proposed suite of experiments includes a new 260-ton Short Baseline Neutrino Detector (SBND), which will sit closest to the source of the particle beam. This detector is under construction by a team of scientists and engineers from universities and national laboratories in the United States and Europe.

The neutrino beam will then encounter the already-completed 170-ton MicroBooNE detector, which will begin operation next year. The final piece is the ICARUS detector, which will be housed in a new building to be constructed on site.

Construction on the ICARUS and SBND buildings is scheduled to begin later this year, and the three experiments should all be operational by 2018. The three collaborations include scientists from 45 institutions in six countries.

The move of the ICARUS detector is a sterling example of cooperation between countries (and between three scientific collaborations) to achieve a global physics goal. The current European strategy for particle physics, adopted by the CERN Council, recommends that Europe play an active part in neutrino experiments in other parts of the world, rather than carry them out at CERN.

The U.S. particle physics community has adopted the P5 (Particle Physics Project Prioritization Panel) plan, which calls for a world-class long-distance neutrino facility to be built at Fermilab and operated by an international collaboration. Fermilab, CERN, INFN and many other international institutions are expected to partner in this endeavour.

Knowledge gained by operating the suite of three liquid-argon experiments will be important in the development of the DUNE experiment at the planned long-distance facility at Fermilab. DUNE will be the largest neutrino oscillation experiment ever built, sending particles 800 miles from Fermilab to a 40,000-ton liquid-argon detector at the Sanford Underground Research Facility in South Dakota. For more information, read this article from symmetry magazine.

"The journey of ICARUS from Italy to CERN to the U.S. is a great example of the global planning in particle physics," said CERN Director General Rolf Heuer. "U.S. participation in the LHC and European participation in Fermilab's neutrino program are integral parts of both European and U.S. strategies. I am pleased that CERN has been able to provide the glue that is allowing DUNE to get off the ground with the transport of ICARUS."

"The ICARUS T600 is the only detector in the world with more than 600 tons of argon to have been successfully operated," said INFN's deputy president Antonio Masiero "ICARUS uses a high-precision, innovative technique to detect neutrinos artificially produced in an accelerator. This technique, developed at INFN and first successfully put into operation in the ICARUS experiment at the INFN's Gran Sasso National Laboratory, will make in the new dedicated facility at Fermilab a fundamental contribution to neutrino research."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Fermilab
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TIME AND SPACE
Detector at the South Pole explores the mysterious neutrinos
Copenhagen, Denmark (SPX) Apr 22, 2015
Neutrinos are a type of particle that pass through just about everything in their path from even the most distant regions of the universe. The Earth is constantly bombarded by billions of neutrinos, which zip right through the entire globe, houses, animals, people - everything. Only very rarely do they react with matter, but the giant IceCube experiment at the South Pole can detect when th ... read more


TIME AND SPACE
New 'space trash' laser may tidy up Earth's orbit

Technique could slash energy used to produce many plastics

Tethers Unlimited to recycle ISS plastic waste into 3D printer filament

ADS NEWTON products enable agile satellite missions

TIME AND SPACE
U.S. Special Operations Command orders MUOS-capable radios

Thales supplying intercoms for Australian military vehicles

Army issues draft RFP for manpack radios

Rockwell Collins intros new military communications system

TIME AND SPACE
SpaceX: We Know Why Our Rocket Crashed

SpaceX Dragon cargo ship arrives at space station

Video shows SpaceX rocket booster crash land on floating target

Russia Should Consider Launching Super-Heavy Rockets From Vostochny

TIME AND SPACE
Telit GNSS module enables high-performance position reporting

China to launch three or four more BeiDou satellites this year

Two new satellites join the Galileo constellation

China launches upgraded satellite for independent SatNav system

TIME AND SPACE
French aviation engine-maker opens new facility

USAF realigns B-1 bomber fleets

Europe's Airbus wins Polish chopper deal: report

South Korea boosting Peru aviation industry: president

TIME AND SPACE
How to maximize the critical temperature in a molecular superconductor

Control of quantum bits in silicon paves way for large quantum computers

Graphene looking promising for future spintronic devices

New understanding of electromagnetism could enable 'antennas on a chip'

TIME AND SPACE
GOCE helps tap into sustainable energy resources

NASA, USGS Begin Work on Landsat 9 to Continue Land Imaging Legacy

Protecting nature on the fly

TRMM rainfall mission comes to an end after 17 years

TIME AND SPACE
Ivory Coast toxic spill victims hope for reparations

Air pollution levels drop in China: Greenpeace

Dispersant used to clean gulf spill more toxic to corals than the oil

Mountain of electrical waste reaches new peak: report




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.