Space Industry and Business News  
TECH SPACE
Hyperbolic metamaterials exhibit 2T physics
by Staff Writers
Washington DC (SPX) Sep 22, 2020

(a) In the absence of external magnetic field, cobalt nanoparticles are randomly distributed within the ferrofluid, and their magnetic moments (which are shown by the red arrows) have no preferred spatial orientation. (b) Application of external magnetic field leads to formation of nanocolumns (made of nanoparticles) which are aligned along the field direction. Propagation of light in such a metamaterial is mathematically described by two time-like variables. (c) Schematic diagram of the experimental geometry. A thermal camera is used to study CO2 laser beam propagation through the ferrofluid subjected to external DC magnetic field. The inset shows the measured beam shape in the absence of the ferrofluid sample. Two orientations of the external magnetic field B used in our experiments are shown by green arrows. The red arrow shows laser light polarization.

Metamaterials - nanoengineered structures designed for precise control and manipulation of electromagnetic waves - have enabled such innovations as invisibility cloaks and super-resolution microscopes. Using transformation optics, these novel devices operate by manipulating light propagation in "optical spacetime," which may be different from the actual physical spacetime.

According to Igor Smolyaninov of the University of Maryland, "One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales." That proposal was recently realized experimentally by demonstration of two-time (2T) behavior in ferro-fluid-based hyperbolic metamaterials by Smolyaninov and a team of researchers from Towson University, led by Vera Smolyaninova. The observed 2T behavior has potential for use in ultrafast all-optical hypercomputing.

2T physics
The familiar three spatial dimensions and one temporal dimension of conventional spacetime find an alternative paradigm in 2T physics, which has two spatial and two temporal dimensions. Pioneered through theoretical investigation and modeling by physicists Paul Dirac and Andrei Sakharov in the 1960s, 2T space-time was more recently explored by Smolyaninov with Evgenii Narimanov of Purdue University. Their theoretical model predicted that light waves might exhibit 2T behavior in hyperbolic metamaterials.

Nonlinear hyperbolic metamaterials for precision light control
Hyperbolic metamaterials are extremely anisotropic, behaving like a metal in one direction and like a dielectric in the orthogonal direction. Originally introduced to improve optical imaging, hyperbolic metamaterials demonstrate a number of novel phenomena, such as very low reflectivity, extreme thermal conductivity, high temperature superconductivity, and interesting gravity theory analogues.

Smolyaninov explains that the gravity analogues are a coincidental mathematical parallel: the mathematical equations that describe propagation of light in hyperbolic metamaterials also describe particle propagation in the physical, or Minkowski, spacetime in which one of the spatial coordinates behaves as a "time-like variable."

Smolyaninov explains further that nonlinear optical effects "bend" this flat Minkowski spacetime, resulting in "effective gravitational force between extraordinary photons."

According to Smolyaninov, experimental observation of the effective gravity in such a system should enable observation of the emergence of the gravitational arrow of time along a spatial direction. Together with conventional physical time, the two time-like variables guide evolution of the light field in a hyperbolic metamaterial.

Experimental progress in this exciting field has been relatively slow until recently, due to difficulties associated with the 3D nanofabrication techniques necessary to produce large-volume 3D nonlinear hyperbolic metamaterials. The research team developed an alternative way to fabricate large-volume 3D nonlinear hyperbolic metamaterials using self-assembly of magnetic metallic nanoparticles in a ferrofluid subjected to external magnetic field.

Smolyaninov explains, "Due to nonlinear optical Kerr effect in the strong optical field of a CO2 laser, light propagating inside the ferrofluid indeed exhibits pronounced gravity-like effects, leading to emergence of the gravitational arrow of time."

As predicted by the earlier theoretical work, the experimentally observed dynamics of self-focused light filaments may indeed be described mathematically using the 2T physics model.

Ultrafast all-optical hypercomputing
According to Smolyaninov, ultrafast all-optical hypercomputing involves mapping a computation performed during a given period of time onto a much faster computation performed using a given spatial volume of a hyperbolic metamaterial - a possibility enabled by the observed 2T behavior. Smolyaninov notes that hypercomputing schemes may be useful in time-sensitive applications, such as real-time computing, flight control, or target recognition.

Research Report: "Experimental observation of effective gravity and two-time physics in ferrofluid-based hyperbolic metamaterials"


Related Links
International Society For Optics And Photonics
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TECH SPACE
Making waves in space
Paris (ESA) Sep 16, 2020
The International Space Station is an exciting place for experiments. This one in particular was making waves in space. Called Fluidics, the experiment studies fluid dynamics in microgravity and recently performed another successful round of science on board the Space Station. Developed by French space agency CNES and co-funded by Airbus Defense and Space, the Fluidics or Fluid Dynamics in Space experiment is probing how fluids behave in weightlessness. Have you ever tried walking while carr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Could PlayStation 5 and Xbox Series X be swan song for consoles?

Physicists make electrical nanolasers even smaller

PlayStation 5 launch sets up Xbox head-to-head

Palantir listing may shine light on secretive Big Data firm

TECH SPACE
AEHF-6 protected communications satellite completes on-orbit testing

Air Force Research Laboratory Tracks Sporadic E

Lockheed Martin to build Mesh Network of 10 smallsats

Lockheed, York nab $281.6M for new military satellite network

TECH SPACE
TECH SPACE
Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

GPS 3 receives operational acceptance

Air Force navigation technology satellite passes critical design review

TECH SPACE
Coronavirus epicentre Wuhan re-opens for international flights

NASA marks continued progress on X-59

Norwegian Air to cut emissions by 45% by 2030

Air Force delays fitness testing until January

TECH SPACE
U.S., Britain partner on research into sensor information processing

New technology lets quantum bits hold information for 10,000 times longer than previous record

Pentagon: It's time to bring microelectronics manufacturing to the U.S.

Artificial materials for more efficient electronics

TECH SPACE
Ball Aerospace selected by NASA to study sustainable land imaging technologies

NASA monitors carbon monoxide from California wildfires

Emissions pioneer GHGSat secures US$30m in Series B funding

China launches new optical remote-sensing satellite

TECH SPACE
Mercury concentrations in Yukon River fish could surpass EPA criterion by 2050

Brown Danube: How Belgrade's sewers taint Europe's famous river

Smog blankets US West Coast as deadly wildfires rage

For small island nations, marine plastic cleanup is prohibitively expensive









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.