![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Santa Barbara CA (SPX) May 15, 2018
The average hippo weighs more than 3,000 pounds and consumes about 100 pounds of vegetation daily. This naturally results in large quantities of dung being deposited into the rivers and lakes where hippos spend their days. In general, the nutrients delivered via hippo dung to such aquatic ecosystems are perceived to be beneficial. For millennia, they provided a natural source of fertilizer that appears to fuel life in aquatic food webs. That may be changing. In sub-Saharan Africa, deforestation, water-intensive agriculture and now climate change are significantly altering water cycles and causing many rivers to begin to dry. A new study by UC Santa Barbara community ecologist Keenan Stears, with colleagues at UC Berkeley and Sokoine University of Agriculture in Tanzania, examines how these forces of global change are redefining the way hippos - and their dung - shape the ecology of freshwater ecosystems. The findings appear in the Proceedings of the National Academy of Sciences. "This work explores how hippo dung shapes freshwater chemistry and links these changes to associated patterns of aquatic biodiversity change," said Stears, a postdoctoral researcher in UCSB's Department of Ecology, Evolution, and Marine Biology (EEMB). "It also illustrates that the net impact of hippos on river ecosystems is dynamically controlled by river hydrology and reveals the capacity of human disturbances on river flow to drastically alter the role of ecosystem-linking species." Stears and his team studied river flow and hippo density in the Great Ruaha River in Tanzania's Ruaha National Park, which protects an area about the size of Connecticut and is home to large populations of some of Africa's most iconic species. The Great Ruaha River is the backbone of life in this dry region. Since 1993, however, the once constantly flowing river has ceased to flow during the dry season. The researchers tested nearly a dozen attributes of water quality and measured the diversity and abundance of aquatic life in hippo pools over multiple years, both when river flow was high and during dry periods when the river stopped flowing. "During the dry season when there was no flow, the pools were completely separated," Stears explained. "We found a huge buildup of hippo dung, and therefore nutrient concentrations within high-density hippo pools. The high influx of nutrients caused the dissolved oxygen concentration to decline to sublethal levels for most fish species." EEMB assistant professor Douglas McCauley, a senior researcher on the project, called these results an alarm bell for African wildlife. "Hippos are to Africa what polar bears are to the Arctic," he said. "Everything we thought we knew about how African ecosystems worked appears to be changing. Global change has turned productive hippo pools, once teeming with fish and life, into fetid black cesspools." Only a few species of fish and insects are able to survive in the hippo pools when the river dries, because of extreme losses of dissolved oxygen in these pools. Stears and his colleagues noted large reductions in fish diversity and abundance inside the pools that were overfueled by dung when river flow ceased. When the rains returned and the river resumed its flow, the researchers saw a reset in many impacts of hippo dung on water quality and biodiversity detected during the dry season. "This suggests some kind of resilience within the system that allows it to recover after the hydrological disturbance every dry season," Stears said. "This resilience signifies that there is hope for this system, but without intervention soon, the chronic stress caused by river drying and overfertilizing of hippo dung may cause long-term species loss in this river system." According to Stears, the findings from this study highlight the value of accelerating more efficient water-management policies and land-management practices not only for the conservation of hippos but also to ensure the sustained health and functioning of African watersheds in a changing environment. "A lot of our results directly assess how changing river flow alters the hippos' influence on the ecological diversity and functioning of watersheds," Stears said. "However, these findings also call attention to the profound ways in which the dry-season impacts of hippos may influence local communities that rely on rivers as a food source. Tilapia are a commonly consumed fish throughout Africa and, during the dry season, we found that the presence of hippos reduced tilapia abundance by 41 percent across the watershed. That's not only bound to have ecological consequences but will also impact the human populations that rely on these rivers."
![]() ![]() In Japan-China ties, ibis outreach but no panda diplomacy Tokyo (AFP) May 9, 2018 China has famously used its cuddly panda bears as a diplomatic tool, but to mark warming ties with Japan it is offering a distinctly more angular gift: two crested ibises. To some, the bird might not appear much of a looker: it has a bright red face with a long narrow beak that curves downward, and its eponymous crest resembles the wispy white mullet of an ageing rocker. But after Japan's last wild crested ibis died in 2003, rendering the species extinct in its homeland, the country has looked a ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |