![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() by Staff Writers Boulder CO (SPX) Apr 03, 2018
University of Colorado Boulder researchers have created a map of the Northern Hemisphere showing how location and humidity can affect precipitation, illustrating wide variability in how and why different areas receive snow or rain. 32 degrees Fahrenheit is commonly considered to be the air temperature threshold for rain versus snow, thus informing meteorological forecasting and climate simulations. The new findings, however, show that coastal areas have a cooler threshold for rain, meaning that even temperatures below freezing might not produce snow. Inland and mountainous areas, meanwhile, are likelier to see flurries even when temperatures are several degrees above freezing. "In Denver, Colorado, it might be 40 degrees and snowing. But in Charleston, South Carolina, it could be 28 degrees and raining," said Noah Molotch, Director of the Center for Water Earth Science and Technology (CWEST) at CU Boulder and a co-author of the study. "This study shows these fine-grain differences on a hemisphere-level scale for the first time." The research, which compiled nearly 18 million precipitation observations spanning over 100 countries and four continents across the Northern Hemisphere, was published in the journal Nature Communications. The ability to differentiate rain from snow has important ramifications for Earth's hydrologic cycle and water management, especially in drought-stricken areas of the American west. Winter snowfall is estimated to provide water storage for one billion people worldwide while climate warming could increase the amount of future rain-on-snow events, raising the risk of flooding. "Snow and rain differ greatly in the ways they affect climate," said Ben Livneh, an assistant professor in CU Boulder's Department of Civil, Environmental and Architectural Engineering and a co-author of the study. "Snow acts as a water reservoir and reflects incoming sunlight, whereas if the same amount of precipitation falls as rain, that can dramatically change water resource management decisions." To date, land surface models have typically predicted rain and snow based on a single, consistent air temperature threshold: snow below it and rain above it. But the CU Boulder researchers found that the threshold is not static and that relative humidity and surface pressure play an important role as well. "The rain-snow air temperature threshold is primarily a function of relative humidity and methods incorporating humidity and elevation are more likely to predict rain and snow correctly," said Keith Jennings, a graduate researcher in CU Boulder's Institute of Arctic and Alpine Research (INSTAAR) and the lead author of the study. "If you just use 32 degrees Fahrenheit across the board, your estimates will be wrong in lots of places." The continental U.S. had the most rain-snow variability of any country included in the study. Some of the coolest northern hemisphere thresholds were observed in the southeastern United States while the Rockies and intermountain West had some of the warmest thresholds. The new study could inform the future of climate and land surface modeling as researchers look for ways to predict snowfall versus rainfall more accurately, especially in areas crucial for freshwater, agriculture and biodiversity. Future research will look to improve the map and simulations by incorporating even more meteorological data points from around the world. "The great thing about this research is that anyone can observe these variables right in their own backyard," said Molotch. "The topic lends itself well to future citizen science."
![]() ![]() Three Spaniards die in Swiss avalanche Geneva (AFP) April 1, 2018 Three Spanish cross-country skiers died after being engulfed by an avalanche in the Swiss Alps, police said Sunday. Police in the canton of Valais said two fellow skiers survived the avalanche, which hit Saturday afternoon as they headed for the Fiescheralp area at an altitude of some 2,450 metres (8,000 feet). Spain's foreign ministry confirmed to AFP the three casualties were Spanish nationals. The ministry did not give further details but said its officials were in contact with Swiss auth ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |