Space Industry and Business News  
EXO WORLDS
Hubble finds faraway planet vanishing at record speed
by Staff Writers
Baltimore MD (SPX) Dec 14, 2018

This graphic plots exoplanets based on their size and distance from their star. Each dot represents an exoplanet. Planets the size of Jupiter (located at the top of the graphic) and planets the size of Earth and so-called super-Earths (at the bottom) are found both close and far from their star. But planets the size of Neptune (in the middle of the plot) are scarce close to their star. This so-called desert of hot Neptunes shows that such alien worlds are rare, or, they were plentiful at one time, but have since disappeared. The detection that GJ 3470b, a warm Neptune at the border of the desert, is fast losing its atmosphere suggests that hotter Neptunes may have eroded down to smaller, rocky super-Earths.

The speed and distance at which planets orbit their respective blazing stars can determine each planet's fate - whether the planet remains a longstanding part of its solar system or evaporates into the universe's dark graveyard more quickly.

In their quest to learn more about far-away planets beyond our own solar system, astronomers discovered that a medium-sized planet roughly the size of Neptune, GJ 3470b, is evaporating at a rate 100 times faster than a previously discovered planet of similar size, GJ 436b.

The findings, published in the journal of Astronomy and Astrophysics, advance astronomers' knowledge about how planets evolve.

"This is the smoking gun that planets can lose a significant fraction of their entire mass. GJ 3470b is losing more of its mass than any other planet we seen so far; in only a few billion years from now, half of the planet may be gone," said David Sing, Bloomberg Distinguished Professor at Johns Hopkins and an author on the study.

The study is part of the Panchromatic Comparative Exoplanet Treasury (PanCET) program, led by Sing, which aims to measure the atmospheres of 20 exoplanets in ultraviolet, optical and infrared light, as they orbit their stars. PanCET is the largest exoplanet observation program to be run with NASA's Hubble Space Telescope.

One particular issue of interest to astronomers is how planets lose their mass through evaporation. Planets such as "super" Earths and "hot" Jupiters orbit more closely to their stars and are therefore hotter, causing the outermost layer of their atmospheres to be blown away by evaporation.

While these larger Jupiter-sized and smaller Earth-sized exoplanets are plentiful, medium Neptune-sized exoplanets (roughly four times larger than Earth) are rare. Researchers hypothesize that these Neptunes get stripped of their atmospheres and ultimately become smaller planets.

It's difficult, however, to actively witness them doing so because they can only be studied in UV light, which limits researchers to examining nearby stars no greater than 150 light-years away from earth, not obscured by interstellar material. GJ 3470b is 96 light-years away and circles a red dwarf star in the general direction of the constellation Cancer.

In this study, Hubble found that exoplanet GJ 3470b had lost significantly more mass and had a noticeably smaller exosphere than the first Neptune-sized exoplanet studied, GJ 436b, due to its lower density and receipt of a stronger radiation blast from its host star.

GJ 3470b's lower density makes it unable to gravitationally hang on to the heated atmosphere, and while the star hosting GJ 436b was between 4 billion and 8 billion years old, the star hosting GJ 3470b is only 2 billion years old; a younger star is more active and powerful, and, therefore, has more radiation to heat the planet's atmosphere.

Sing's team estimates that GJ 3470b may have already lost up to 35 percent of its total mass and, in a few billion years, all of its gas may be stripped off, leaving behind only a rocky core.

"We're starting to better understand how planets are shaped and what properties influence their overall makeup," Sing said. "Our goal with this study and the overarching PanCET program is to take a broad look at these planets' atmospheres to determine how each planet is affected by its own environment. By comparing different planets, we can start piecing together the larger picture in how they evolve."

Looking forward, Sing and the team hope to study more exoplanets by searching for helium in infrared light, which will allow a greater search range than searching for hydrogen in UV light.

Currently, planets, which are made largely of hydrogen and helium, can only be studied through tracing hydrogen in UV light. Using Hubble, the upcoming NASA James Webb Space Telescope (which will have a greater sensitivity to helium), and a new instrument called Carmenes that Sing recently found can precisely track the trajectory of helium atoms, astronomers will be able to broaden their pursuit of distant planets.

Research Report: "Hubble PanCET: An Extended Upper Atmosphere of Neutral Hydrogen Around the Warm Neptune GJ 3470b," V. Bourrier et al., 2018 Dec. 13, Astronomy and Astrophysics


Related Links
Johns Hopkins University
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


EXO WORLDS
Common ground discovered in planet-forming disks
Houston TX (SPX) Dec 13, 2018
A distant star surrounded by a protoplanetary disk of dust and gas has given up more of its secrets to a team led by a Rice University astronomer. And it's in good company. Rice astronomer Andrea Isella proposed several years ago to mount a major study of disks observed around stars by the Atacama Large Millimeter/submillimeter Array (ALMA), the world's most advanced radio telescope, on the high plains of Chile. The disks are believed to be the raw feedstock around young stars for planetary system ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Radiation experiment flies on record-setting SpaceX launch dedicated entirely to small satellites

Astroscale enters technical cooperation with European Space Agency

Supercomputers without waste heat

Multifunctional dream ceramic matrix composites are born

EXO WORLDS
Global Ku-Band HTS platform provides government customers with unprecedented solutions

US Space Force Takes Over Satellite Purchases to Boost Warfighter Communication

Boeing tapped by Air Force for jam-resistant satellite comms terminals

Navy nanosatellite launch delayed for further inspection

EXO WORLDS
EXO WORLDS
Lockheed Martin prepares GPS III satellite for SpaceX launch

First Lockheed Martin-Built GPS III satellite encapsulated for Dec. 18 launch

Spire Taps Galileo for Space-Based Weather Data

UK will build its own satellite-navigation system after Brexit

EXO WORLDS
US military declares five missing Marines dead after Japan crash

Germany opens negligent homicide probe in Mali Airbus chopper crash

Aircraft readiness goals for 2019 unlikely to be reached, officials say

Navy taps Sikorsky for database to support CH-53K helicopters

EXO WORLDS
Bringing advanced microelectronics to revolutionary defense applications

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

Copper compound as promising quantum computing unit

Two-dimensional materials skip the energy barrier by growing one row at a time

EXO WORLDS
Copernicus Sentinel-5P ozone boosts daily forecasts

New ammonia emission sources detected from space

First Radar Image from ICEYE-X2 Published Only A Week After Launch

Ball Aerospace delivers pollution monitoring instrument to NASA

EXO WORLDS
Waste plant fire stokes Italy garbage crisis

Madrid temporarily bans 'oldest, most polluting' vehicles

Slow recycler Turkey seeks better uses for its trash

Lynas mulls 'legal options' after Malaysia imposes new conditions









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.