Space Industry and Business News  
TIME AND SPACE
How to weigh a black hole with the Webb Space Telescope
by Christine Pulliam Space Telescope Science Institute
Baltimore MD (SPX) Oct 22, 2018

Webb will use an innovative instrument called an integral field unit to capture images and spectra at the same time. (file image) See video presentation

At first glance, the galaxy NGC 4151 looks like an average spiral. Examine its center more closely, though, and you can spot a bright smudge that stands out from the softer glow around it. That point of light marks the location of a supermassive black hole weighing about 40 million times as much as our Sun.

Astronomers will use NASA's James Webb Space Telescope to measure that black hole's mass. The result might seem like a piece of trivia, but its mass determines how a black hole feeds and affects the surrounding galaxy. And since most galaxies contain a supermassive black hole, learning about this nearby galaxy will improve our understanding of many galaxies across the cosmos.

"Some central questions in astrophysics are: How does a galaxy's central black hole grow with time; how does the galaxy itself grow with time; and how do they affect each other? This project is a step toward answering those questions," explained Misty Bentz of Georgia State University, Atlanta, the principal investigator of the project.

Probing a galaxy's core
There are several methods of weighing supermassive black holes. One technique relies on measuring the motions of stars in the galaxy's core. The heavier the black hole, the faster nearby stars will move under its gravitational influence.

NGC 4151 represents a challenging target, because it contains a particularly active black hole that is feeding voraciously. As a result, the material swirling around the black hole, known as an accretion disk, shines brightly. The light from the accretion disk threatens to overwhelm the fainter light from stars in the region.

"With Webb's beautifully shaped mirrors and sharp 'vision,' we should be able to probe closer to the galaxy's center even though there's a really bright accretion disk there," said Bentz.

The team expects to be able to investigate the central 1,000 light-years of NGC 4151, and be able to resolve stellar motions on a scale of about 15 light-years.

A thousand spectra at once
To achieve this feat, the team will use Webb's Near-Infrared Spectrograph (NIRSpec) integral field unit, or IFU. It will be the first IFU flown in space, and it has a unique capability.

Webb's IFU takes the light from every location in an image and splits it into a rainbow spectrum. To do this it employs almost 100 mirrors, each of them precision crafted to a specific shape, all squeezed into an instrument the size of a shoebox. Those mirrors effectively slice a small square of the sky into strips, then spread the light from those strips out both spatially and in wavelength.

In this way a single image yields 1,000 spectra. Each spectrum tells astronomers not only about the elements that make up the stars and gas at that exact point of the sky, but also about their relative motions.

Despite Webb's exquisite resolution, the team won't be able to measure the motions of individual stars. Instead, they will get information about groups of stars very close to the center of the galaxy. They will then apply computer models to determine the gravitational field affecting the stars, which depends on the size of the black hole.

"Our computer code generates a bunch of mock stars - tens of thousands of stars, mimicking the motions of real stars in the galaxy. We put in a variety of different black holes and see what matches the observations the best," said Monica Valluri of the University of Michigan, a co-investigator on the project.

The result of this technique will be compared with a second one that focuses on the gas at the galaxy's center, rather than the stars.

"We should get the same answer, no matter what technique we use, if we're looking at the same black hole," said Bentz. "NGC 4151 is one of the best targets for making that comparison."

These observations will be taken as part of the Director's Discretionary-Early Release Science program. The DD-ERS program provides time to selected projects enabling the astronomical community to quickly learn how best to use Webb's capabilities, while also yielding robust science.


Related Links
James Webb Space Telescope
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


TIME AND SPACE
Supermassive black holes and supercomputers
Washington DC (SPX) Oct 18, 2018
The Big Bang has captured our imagination like no other theory in science: the magnificent, explosive birth of our Universe. But do you know what came next? Around 100 million years of darkness. When the cosmos eventually lit up its very first stars, they were bigger and brighter than any that have followed. They shone with UV light so intense, it turned the surrounding atoms into ions. The Cosmic Dawn - from the first star to the completion of this 'cosmic reionization', lasted roughly one ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Orbit Logic's scheduling software selected for NASA satellite servicing mission

Bursting the clouds for better communication

Penetrating the soil's surface with radar

Lockheed Martin reaches technical milestone for Long Range Discrimination Radar

TIME AND SPACE
Military communications satellite online in orbit following launch

Navistar contracted by Army for MRAP tech support

Aerojet Rocketdyne powers 4th AEHF-4 to orbital position

Scientists want to blast holes in clouds with laser to boost satellite communication

TIME AND SPACE
TIME AND SPACE
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

TIME AND SPACE
Indonesia $200m in arrears on fighter project: S. Korea

Dandelion seeds reveal newly discovered form of natural flight

Merging mathematical and physical models toward building a more perfect flying vehicle

Rockwell Collins wins bid for Navy aircraft repair

TIME AND SPACE
Electrical enhancement: Engineers speed up electrons in semiconductors

Printed 3D supercapacitor electrode breaks records in lab tests

First proof of quantum computer advantage

New memristor boosts accuracy and efficiency for neural networks on an atomic scale

TIME AND SPACE
Zooming in on Mexico's landscape

Government of Canada to invest $7.2M in exactEarth

Earth observation data market to reach $2.4B

GOES-17 begins move to its new operational position

TIME AND SPACE
Plastic piling up in Japan after China waste ban: survey

Delhi holds breath as burning farms herald pollution season

Study: Air pollution deaths in U.S. dropped by half between 1990, 2010

Swim team braves pollution to dive into Gaza waters









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.