Space Industry and Business News  
NANO TECH
How to move objects at the nanoscale
by Staff Writers
Trieste, Italy (SPX) Aug 17, 2017


The theoretical predictions of these study could be of great interest in the frame of manipulating materials at the nanoscale for technological applications. Image courtesy Emanuele Panizon.

To move a nanoparticle on the surface of a graphene sheet, you won't need a "nano-arm": by applying a temperature difference at the ends of the membrane, the nanocluster laying on it will drift from the hot region to the cold one. In addition, contrary to the laws ruling the world at the macroscale, the force acting on the particle - the so-called thermophoretic force - should not decrease as the sheet length rises, sporting a so-called ballistic behavior, same as a bullet in a gun barrel.

In fact, simulations show that vertical thermal oscillations of the graphene membrane flow ballistically from hot to cold, providing a push to the object. Yet, these vertical waves, known as flexural phonons, should not be able to impress any lateral shift to an object.

Nevertheless, computer simulations show that they do push the nanocluster in the same way a surfboard is taken to shore by ocean waves. And, of course within limits, no matter how far away the wave came from. These theoretical predictions could be of great interest in the frame of manipulating materials at the nanoscale, in view of potential technological applications.

The research, which was conducted by a joint SISSA-ICTP group and funded by a European ERC Advanced Research Grant, has been recently published by co-authors Emanuele Panizon, Roberto Guerra and Erio Tosatti, coordinator of the study, in Proceedings of the National Academy of Sciences (US).

"Temperature gradients in a fluid impart on a body a force that can displace it: such a phenomenon, technically referred to as thermophoresis, has been known for centuries. More recently, numerical simulations have indicated that such a gradient-induced spatial shift also works for molecules or small clusters placed on a solid two-dimensional membrane like graphene. But no one ever tried to deeply understand the physics behind the process. This was the aim of our study," the scientists explain.

Using specific software, the researchers have simulated the behaviour of a tiny gold nanocluster, made of a few hundred atoms, adsorbed on a graphene sheet suspended between two ends with different temperatures.

"In such a condition, the particle actually moves from the hot to the cold end. Surprisingly, though, the thrust impressed to it only depends on the thermal gradient and not on the sheet length," say the researchers.

So, it is shown that the distance between the two ends of the membrane has no influence on the force acting on the gold cluster, force which remains constant up to and beyond a 100-nanometer sheet length.

"We have named this peculiar thermophoresis ballistic, to distinguish it from the diffusive one which naturally holds in the macroscopic world. Using a simple metaphor, imagine the two ends of the graphene sheet as the top and the bottom of a slide at the playground, and the temperature difference as the height gap.

In the macroscopic world we experience in our everyday life, the closer the ends of the slide are, the faster the drop of the object will be. In the nanoworld, according to our simulations, this is not what happens. At this scale, force and dropping speed only depend on the temperature gradient. But not on the distance."

"We have found that the force experienced by the particle is due to vertical thermal movements, known as flexural phonons, which are particularly wide and soft in a graphene membrane. The flexural phonons flux flows from hot to cold without losing strength and pushing the object over the surface," the scientists continue.

Hold on. How can such vertical thermal waves give a horizontal push to the gold cluster?

"Our study shows that a precise anharmonic mechanisms plays a crucial role in graphene and in other two-dimensional flexible membranes. This mechanism provides flexural phonons with mechanical momentum, which they usually don't have. Acting as if they carry a mass, phonons transfer part of their momentum to the gold particle, inducing it to move."

The researchers continue to explain: "It's exactly like a tablecloth on a table: a corrugation in the centre (the flexural phonons), meaning higher cloth density in the centre, forces the extremes to contract (the longitudinal phonons, in the case of graphene). The deposited particle is only sensitive to the corrugation, which pushes it forward."

"When this project started we were not expecting to be able to observe such a variety of phenomena, it was a purely theoretical study. Our results, though, can now open the way to future experiments, as a distance-independent mechanical force could well possess practical applications," they conclude.

Research paper

NANO TECH
New method promises easier nanoscale manufacturing
Chicago IL (SPX) Jul 31, 2017
Scientists at the University of Chicago and Argonne National Laboratory have discovered a new way to precisely pattern nanomaterials that could open a new path to the next generation of everyday electronic devices. The new research, published July 28 in Science, is expected to make such materials easily available for eventual use in everything from LED displays to cellular phones to photod ... read more

Related Links
Scuola Internazionale Superiore di Studi Avanzati
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
Archinaut Project conducts first large-scale 3D build in space-like environment

Air Force tests new radar receivers for rescue helicopters

Lockheed Martin integrates first modernized A2100 satellite

Marine Corps testing mobile 3D printing lab

NANO TECH
ViaSat, Data Link receive $123.4M for MIDS JRTS radios

Envistacom wins $10M Army communications contract

82nd Airborne tests in-flight communication system for paratroopers

North Dakota UAS Training Center Depends on IGC Satellite Connectivity

NANO TECH
NANO TECH
Harris delivers navigation package for third GPS III satellite

IAI, Honeywell Aerospace team for GPS anti-jam system

Lockheed Martin Begins Modernizing Receivers for U.S. Air Force's GPS Signal Monitoring Stations

Russia, China to Set Up Pilot Zone to Test National Navigation Systems

NANO TECH
Lockheed Martin receives $24.1M F-35 systems contract

Troubled Cathay loses HK$2.05 billion in first half 2017

Objects spotted near suspected MH370 crash site - Australia

France and Germany announce new joint fighter program

NANO TECH
Single-photon emitter has promise for quantum info-processing

A semiconductor that can beat the heat

Saelig introduces Sol Chip autonomous, solar-powered sensor station

Ultracold molecules hold promise for quantum computing

NANO TECH
Airbus completes MetOp-C platform/payload coupling

Ozone treaty taking a bite out of US greenhouse gas emissions

Nickel key to Earth's magnetic field, research shows

Successful filming of fastest aurora flickering

NANO TECH
Treaty to curb mercury exposure takes effect

Canada looking to add environmental protections to NAFTA

Probiotics help poplar trees clean up toxins in Superfund sites

Cambodia bans overseas exports of coastal sand









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.