Space Industry and Business News  
EARLY EARTH
How snakes lost a blueprint for making limbs
by Staff Writers
Washington DC (SPX) Oct 24, 2016


This image depicts mouse embryos with the ZRS from cobra or python inserted into their genomes, replacing the normal gene regulator. Their truncated limb development is visible in the comparative bone scans. Image courtesy Kvon et al./Cell 2016. For a larger version of this image please go here.

Snakes lost their limbs over 100 million years ago, but scientists have struggled to identify the genetic changes involved. A Cell paper publishing October 20 sheds some light on the process, describing a stretch of DNA involved in limb formation that is mutated in snakes. When researchers inserted the snake DNA into mice, the animals developed truncated limbs, suggesting that a critical stretch of DNA lost its ability to support limb growth during snake evolution.

"This is one of many components of the DNA instructions needed for making limbs in humans and, essentially, all other legged vertebrates. In snakes, it's broken," says Axel Visel, a geneticist at the Lawrence Berkeley National Laboratory and senior author on the paper. "It's probably one of several evolutionary steps that occurred in snakes, which, unlike most mammals and reptiles, can no longer form limbs."

Today's serpents have undergone one of the most dramatic body plan changes in the evolution of vertebrates. To study the molecular roots of this adaptation, Visel and his colleagues started looking at published snake genomes, including the genomes from basal snakes such as boa and python, which have vestigial legs - tiny leg bones buried in their muscles - and advanced snakes, such as viper and cobra, which that have lost all limb structures.

Within these genomes, they focused specifically on a gene called Sonic hedgehog, or Shh, involved in many developmental processes - including limb formation. The researchers delved further into one of the Shh gene regulators, a stretch of DNA called ZRS (the Zone of Polarizing Activity Regulatory Sequence) that was present but had diverged in snakes.

To determine the consequences of these mutations, the researchers used CRISPR, a genome-editing method, to insert the ZRS from various other vertebrates into mice, replacing the mouse regulator. With the ZRS of other mammals, such as humans, the mice developed normal limbs.

Even when they inserted the ZRS from fish, whose fins are structurally very different from limbs, the mice developed normal limbs. However, when the researchers replaced the mouse ZRS with the python or cobra version, the mice went on to develop severely truncated forelimbs and hindlimbs.

"Using these new genomic tools, we can begin to explore how different evolutionary versions of the same enhancer affect limb development and actually see what happens," says Visel. "We used to be mostly staring at sequences and speculating about molecular evolution, but now, we can really take these studies to the next level."

To identify the mutations in the snakes' ZRS that were responsible for its inactivation during snake evolution, the researchers took a closer look at the evolutionary history of individual sequence changes.

By comparing the genomes of snakes and other vertebrates, they identified one particularly suspicious 17 base-pair deletion that only occurred in snakes; this deletion removed a stretch of the ZRS that has a key role in regulating the Shh gene in legged animals.

The research team turned back the evolutionary clock, restoring the missing 17 base pairs in an artificially created hybrid version of the python ZRS, and tested the edited DNA in mice. Those that carried this evolutionarily "resurrected" ZRS in their genome, replacing their normal regulator, developed normal legs.

However, Visel cautions that the evolutionary events were probably more complex than just the one deletion: "There's likely some redundancy built into in the mouse ZRS. A few of the other mutations in the snake ZRS probably also played a role in its loss of function during evolution."

Of course, snakes aren't the only vertebrate animals that lack arms and legs - some lizards, eels and other fish, and marine mammals, for example, have also adapted limb reduction to varying degrees and likely underwent a slightly different evolutionary process.

"Loss of limbs has occurred multiple times independently during animal evolution, and it's safe to assume that mutations affecting other genes were involved," says Visel. "It's a complex problem, but with the introduction of genome-editing tools, we can finally start tying specific DNA changes to alterations in body shape more systematically."

Research papers"Progressive Loss of Function in a Limb Enhancer During Snake Evolution" and "Loss and Re-emergence of Legs in Snakes by Modular Evolution of Sonic hedgehog and HOXD Enhancers"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Cell Press
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Fast driver spotted on evolutionary tracks
Seattle WA (SPX) Oct 17, 2016
Living things have long used a previously unrecognized method for diversifying and evolving. This strategy, as reported this week in Science, could account for some of the variation seen across species. The work was led by the labs of Pedro Beltrao of the European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI) in the United Kingdom, and UW Medicine researcher Ju ... read more


EARLY EARTH
Pushing the boundaries of magnet design

Polymer breakthrough to improve things we use everyday

Efficiency plus versatility

New kind of supercapacitor made without carbon

EARLY EARTH
Arizona aerospace company wins $19M Navy satellite contract

Canada defence dept selects Newtec for first DVB-S2X Airborne Modem

TeleCommunications Systems continues USMC satellite services

SES unveils new tactical surveillance and communications solution

EARLY EARTH
Ariane 5 ready for first Galileo payload

ILS Announces Two Missions under Its EUTELSAT Multi-Launch Agreement

More commercial spaceports going ahead

Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

EARLY EARTH
Australia's coordinates out by more than 1.5 metres: scientist

US Air Force awards Lockheed Martin $395M Contract for two GPS 3 satellites

SMC exercises contract options to procure two additional GPS III satellites

Lockheed gets $395 million GPS III Space Vehicle contract modification

EARLY EARTH
US claims trade victory over China over business jet tax

MH370 hunters to probe underwater objects: Australia

Poland plans new tender for helicopters after Airbus row

L-3 unit begins KC-10 tanker support

EARLY EARTH
Sandia, Harvard team create first quantum computer bridge

Quantum computers: 10-fold boost in stability achieved

Infrared brings to light nanoscale molecular arrangement

Researchers develop DNA-based single-electron electronic devices

EARLY EARTH
FSU geologist explores minerals below Earth's surface

Airbus Defence and Space-built PeruSAT-1 delivers first images

Data improves hurricane forecasts, but uncertainties remain

NASA maps help gauge Italy earthquake damage

EARLY EARTH
Rockcress as heavy-metal hoover

Scientists discover supramolecule could help reduce nuclear waste

Coffee-infused foam removes lead from contaminated water

Great Pacific Garbage Patch aerial survey yields bad news









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.