Space Industry and Business News  
STELLAR CHEMISTRY
How heavy is dark matter
by Staff Writers
Brighton UK (SPX) Jan 28, 2021

stock image only

Scientists have calculated the mass range for Dark Matter - and it's tighter than the science world thought.

Their findings - due to be published in Physics Letters B in March - radically narrow the range of potential masses for Dark Matter particles, and help to focus the search for future Dark Matter-hunters. The University of Sussex researchers used the established fact that gravity acts on Dark Matter just as it acts on the visible universe to work out the lower and upper limits of Dark Matter's mass.

The results show that Dark Matter cannot be either 'ultra-light' or 'super-heavy', as some have theorised, unless an as-yet undiscovered force also acts upon it.

The team used the assumption that the only force acting on Dark Matter is gravity, and calculated that Dark Matter particles must have a mass between 10-3 eV and 107 eV. That's a much tighter range than the 10-24 eV - 1019 GeV spectrum which is generally theorised.

What makes the discovery even more significant is that if it turns out that the mass of Dark Matter is outside of the range predicted by the Sussex team, then it will also prove that an additional force - as well as gravity - acts on Dark Matter.

Professor Xavier Calmet from the School of Mathematical and Physical Sciences at the University of Sussex, said:

"This is the first time that anyone has thought to use what we know about quantum gravity as a way to calculate the mass range for Dark Matter. We were surprised when we realised no-one had done it before - as were the fellow scientists reviewing our paper.

"What we've done shows that Dark Matter cannot be either 'ultra-light' or 'super-heavy' as some theorise - unless there is an as-yet unknown additional force acting on it. This piece of research helps physicists in two ways: it focuses the search area for Dark Matter, and it will potentially also help reveal whether or not there is a mysterious unknown additional force in the universe."

Folkert Kuipers, a PhD student working with Professor Calmet, at the University of Sussex, said:

"As a PhD student, it's great to be able to work on research as exciting and impactful as this. Our findings are very good news for experimentalists as it will help them to get closer to discovering the true nature of Dark Matter."

The visible universe - such as ourselves, the planets and stars - accounts for 25 per cent of all mass in the universe. The remaining 75 per cent is comprised of Dark Matter.

It is known that gravity acts on Dark Matter because that's what accounts for the shape of galaxies.

Research paper


Related Links
University of Sussex
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Dark Energy Survey makes public catalog of nearly 700 million astronomical objects
Chicago IL (SPX) Jan 19, 2021
The Dark Energy Survey, a global collaboration including the Department of Energy's Fermi National Accelerator Laboratory, the National Center for Supercomputing Applications, and the National Science Foundation's NOIRLab, has released DR2, the second data release in the survey's seven-year history. DR2 is the topic of sessions today and tomorrow at the 237th Meeting of the American Astronomical Society, which is being held virtually. The second data release from the Dark Energy Survey, or DES, is ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
3D printing to pave the way for Moon colonization

NASA's Deep Space Network welcomes a new dish to the family

Keep this surface dirty

D-Orbit's ION satellite carrier rides SpaceX's Falcon 9 to orbit

STELLAR CHEMISTRY
Northrop Grumman gets $3.6B for work on Air Force communications node

Skynet 6A passes Preliminary Design Review

Northrop Grumman lands $325M deal for Air Force JSTARS sustainment

ThinKom completes Over-the-Air tests with K/Q-Band antenna on protected comms satellite

STELLAR CHEMISTRY
STELLAR CHEMISTRY
European Commission awards launch contracts for next generation of Galileo satellites

NASA advancing global navigation satellite system capabilities

China releases 4 new BDS technical standards

China sees booming satellite navigation, positioning industry

STELLAR CHEMISTRY
Air Force starts Red Flag 21-1 exercise in southern Nevada

Marine Corps dedicates inaugural F-35 simulator at Air Station Miramar

Sikorsky, Boeing unveil plans for new 'Defiant X,' to replace Black Hawk

Greece, France sign warplane deal in message to Turkey

STELLAR CHEMISTRY
Embattled Intel says earnings better than expected

Transforming quantum computing's promise into practice

ASML earnings up despite pandemic

The changing paradigm of next-generation semiconductor memory development

STELLAR CHEMISTRY
China collects 100PB of Earth observation data

Tiny particles formed from trace gases can seed open ocean clouds

An airborne stratospheric observatory measures concentration of atomic oxygen directly

ABB sensor onboard SpaceX rocket to detect greenhouse gas emissions

STELLAR CHEMISTRY
UK supermarkets caught in plastic packaging: study

Air pollution linked to irreversible sight loss: study

French court hears Agent Orange case against chemical firms

Combined river flows could send up to 3 billion microplastics a day into the Bay of Bengal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.