Space Industry and Business News  
BIO FUEL
How enzymes produce hydrogen
by Staff Writers
Bochum, Germany (SPX) Jul 24, 2017


Martin Winkler (right) and Thomas Happe (left) have captured an enzyme's transient intermediate state. Credit RUB, Marquard

Researchers at Ruhr-Universitat Bochum and the Freie Universitat Berlin have clarified the crucial catalytic step in the production of hydrogen by enzymes. The enzymes, called [FeFe]-hydrogenases, efficiently turn electrons and protons into hydrogen.

They are thus a candidate for the biotechnological production of the potential energy source. 'In order to produce hydrogen on an industrial scale with the aid of enzymes, we must precisely understand how they work,' says Professor Thomas Happe, one of the authors of the study.

The team led by Happe and Dr. Martin Winkler from the Bochum-based Photobiotechnology Working Group reports on the results with Berlin-based colleagues led by Dr. Sven Stripp in the journal Nature Communications.

Enzyme works in two directions
Hydrogenases can work in two directions: they turn protons and electrons into hydrogen, and also split hydrogen into protons and electrons. These reactions take place at the active centre of the hydrogenase, which is a complex structure comprising six iron and six sulphur atoms, called the H-cluster. During the catalytic process, this cluster passes through numerous intermediate states.

When molecular hydrogen (H2) is split, the hydrogen molecule initially bonds to the H-cluster. "Hydrogenase researchers were always convinced that H2 had to split unevenly in the first step of the reaction," explains Martin Winkler. The idea: A positively charged proton (H+) and a negatively charged hydride ion (H-) are created, which then continue to react quickly to form two protons and two electrons.

"The hydride state of the active enzyme, in which the hydride ion is thus bonded to the active centre, is highly unstable - so far no one has been able to verify this," says Winkler. This is precisely what the researchers have now achieved.

Trick makes unstable state visible
Using a trick, they augmented the H-cluster state with the hydride ion, so that it could be verified spectroscopically. When hydrogen is split, a chemical equilibrium is achieved between the reaction partners involved - protons, hydride ions and hydrogen molecules.

The concentrations of the three hydrogen states are determined by a dynamic equilibrium of catalytic H-cluster states.

When the researchers added large quantities of protons and hydrogen to the mixture from outside, they tipped the balance - in favour of the hydride state. The active centre with the negatively charged hydride ion accumulated in a larger quantity; enough to be measurable.

The team also demonstrated the hydride intermediate state, which also occurs during hydrogen production, in further experiments with hydrogenases that had been altered in a specific manner.

"We were thus able to demonstrate the catalytic principle of these hydrogenases in an experiment for the first time," summarises Thomas Happe. "This provides a crucial basis for reproducing the highly effective catalytic mechanism of the H-cluster for the industrial production of hydrogen." The enzymes can convert up to 10,000 hydrogen molecules per second.

Martin Winkler, Moritz Senger, Jifu Duan, Julian Esselborn, Florian Wittkamp, Eckhard Hofmann, Ulf-Peter Apfel, Sven Timo Stripp, Thomas Happe: Accumulating the hydride state in the catalytic cycle of [FeFe]-Hydrogenases, Nature Communications, 2017, DOI: 10.1038/NCOMMS16115

BIO FUEL
New biofuel technology significantly cuts production time
Okanagan, Canada (SPX) Jul 14, 2017
New research from a professor of engineering at UBC's Okanagan Campus might hold the key to biofuels that are cheaper, safer and much faster to produce. "Methane is a biofuel commonly used in electricity generation and is produced by fermenting organic material," says Cigdem Eskicioglu, an associate professor with UBC Okanagan's School of Engineering. "The process can traditionally t ... read more

Related Links
Ruhr-University Bochum
Bio Fuel Technology and Application News


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

BIO FUEL
Nature-inspired material uses liquid reinforcement

Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Signature analysis of single molecules using their noise signals

BIO FUEL
First UAVs, Now Ships - Connectivity for the next generation of remote naval operations

Northrop Grumman receives Australian satellite ground station contract

DISA extends Comtech satellite services to Marines

Harris Corp. awarded Special Forces radio contract

BIO FUEL
BIO FUEL
India Plans to Roll Out National GPS Next Year

Orbital Alliance Techsystems receives contract for GPS artillery

Europe's Galileo satnav identifies problems behind failing clocks

New orbiters for Europe's Galileo satnav system

BIO FUEL
Rising temperatures spell plane take-off woes: study

Flying cars and no more pilots in flight revolution: Airbus

Global warming may limit airplane takeoffs in coming decades

Singapore developing space-based VHF communications for air traffic management

BIO FUEL
Harnessing hopping hydrogens for high-efficiency OLEDs

Researchers develop dynamic templates critical to printable electronics technology

High-precision control of printed electronics

Molecular electronics scientists shatter 'impossible' record

BIO FUEL
Quantum mechanics inside Earth's core

SSL To Provide Next-Generation Imaging Satellite Constellation To Digitalglobe

Computer vision techniques shed light on urban change

Extreme low-oxygen eddies in the Atlantic produce greenhouse gases

BIO FUEL
200 green activists killed in 2016, record toll: watchdog

Study finds toxic mercury is accumulating in the Arctic tundra

Human activities worsen air quality in Dunhuang, a desert basin in China

Herbicide boost for tadpoles: study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.