Space Industry and Business News  
TIME AND SPACE
How Often Do Giant Black Holes Become Hyperactive

The galaxy on the left, Abell 644, is in the center of a galaxy cluster that lies about 1.1 billion light years from Earth. On the right is an isolated, or "field," galaxy named SDSS J1021+1312, which is located about 900 million light years away. At the center of both of these galaxies is a growing supermassive black hole, called an active galactic nucleus (AGN) by astronomers, which is pulling in large quantities of gas. Credit: X-ray: NASA/CXC/Northwestern Univ/D.Haggard et al, Optical: SDSS.
by Staff Writers
Boston MA (SPX) Dec 21, 2010
A new study from NASA's Chandra X-ray Observatory tells scientists how often the biggest black holes have been active over the last few billion years. The object could help scientists better understand how massive stars explode, which ones leave behind black holes or neutron stars, and how many black holes are in our galaxy and others.

This discovery clarifies how supermassive black holes grow and could have implications for how the giant black hole at the center of the Milky Way will behave in the future.

Most galaxies, including our own, are thought to contain supermassive black holes at their centers, with masses ranging from millions to billions of times the mass of the Sun. For reasons not entirely understood, astronomers have found that these black holes exhibit a wide variety of activity levels: from dormant to just lethargic to practically hyper.

The most lively supermassive black holes produce what are called "active galactic nuclei," or AGN, by pulling in large quantities of gas. This gas is heated as it falls in and glows brightly in X-ray light.

"We've found that only about one percent of galaxies with masses similar to the Milky Way contain supermassive black holes in their most active phase," said Daryl Haggard of the University of Washington in Seattle, WA, and Northwestern University in Evanston, IL, who led the study.

"Trying to figure out how many of these black holes are active at any time is important for understanding how black holes grow within galaxies and how this growth is affected by their environment."

This study involves a survey called the Chandra Multiwavelength Project, or ChaMP, which covers 30 square degrees on the sky, the largest sky area of any Chandra survey to date. Combining Chandra's X-ray images with optical images from the Sloan Digital Sky Survey, about 100,000 galaxies were analyzed. Out of those, about 1,600 were X-ray bright, signaling possible AGN activity.

Only galaxies out to 1.6 billion light years from Earth could be meaningfully compared to the Milky Way, although galaxies as far away as 6.3 billion light years were also studied. Primarily isolated or "field" galaxies were included, not galaxies in clusters or groups.

"This is the first direct determination of the fraction of field galaxies in the local Universe that contain active supermassive black holes," said co-author Paul Green of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. "We want to know how often these giant black holes flare up, since that's when they go through a major growth spurt."

A key goal of astronomers is to understand how AGN activity has affected the growth of galaxies.

A striking correlation between the mass of the giant black holes and the mass of the central regions of their host galaxy suggests that the growth of supermassive black holes and their host galaxies are strongly linked. Determining the AGN fraction in the local Universe is crucial for helping to model this parallel growth.

One result from this study is that the fraction of galaxies containing AGN depends on the mass of the galaxy. The most massive galaxies are the most likely to host AGN, whereas galaxies that are only about a tenth as massive as the Milky Way have about a ten times smaller chance of containing an AGN.

Another result is that a gradual decrease in the AGN fraction is seen with cosmic time since the Big Bang, confirming work done by others. This implies that either the fuel supply or the fueling mechanism for the black holes is changing with time.

The study also has important implications for understanding how the neighborhoods of galaxies affects the growth of their black holes, because the AGN fraction for field galaxies was found to be indistinguishable from that for galaxies in dense clusters.

"It seems that really active black holes are rare but not antisocial," said Haggard.

"This has been a surprise to some, but might provide important clues about how the environment affects black hole growth."

It is possible that the AGN fraction has been evolving with cosmic time in both clusters and in the field, but at different rates. If the AGN fraction in clusters started out higher than for field galaxies -- as some results have hinted -- but then decreased more rapidly, at some point the cluster fraction would be about equal to the field fraction. This may explain what is being seen in the local Universe.

The Milky Way contains a supermassive black hole known as Sagittarius A (Sgr A, for short). Even though astronomers have witnessed some activity from Sgr A using Chandra and other telescopes over the years, it has been at a very low level.

If the Milky Way follows the trends seen in the ChaMP survey, Sgr A should be about a billion times brighter in X-rays for roughly 1% of the remaining lifetime of the Sun. Such activity is likely to have been much more common in the distant past.

If Sgr A did become an AGN it wouldn't be a threat to life here on Earth, but it would give a spectacular show at X-ray and radio wavelengths. However, any planets that are much closer to the center of the Galaxy, or directly in the line of fire, would receive large and potentially damaging amounts of radiation.

These results were published in the November 10th issue of the Astrophysical Journal. Other co-authors on the paper were Scott Anderson of the University of Washington, Anca Constantin from James Madison University, Tom Aldcroft and Dong-Woo Kim from Harvard-Smithsonian Center for Astrophysics and Wayne Barkhouse from the University of North Dakota.

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass.



Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Chandra
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


TIME AND SPACE
Pushing Black-Hole Mergers To The Extreme
Rochester NY (SPX) Nov 19, 2010
Scientists have simulated, for the first time, the merger of two black holes of vastly different sizes, with one mass 100 times larger than the other. This extreme mass ratio of 100:1 breaks a barrier in the fields of numerical relativity and gravitational wave astronomy. Until now, the problem of simulating the merger of binary black holes with extreme size differences had remained an une ... read more







TIME AND SPACE
Facebook founder meets with Sina boss during China holiday

U.S. Navy launches first EMAL plane

Pakistani IT firm 'on top of the world' in Blackberry apps

Chilean airline opts for secure upgrade

TIME AND SPACE
IBCS Completes Warfighter-Centered Design Exercises

Arianespace Will Orbit Sicral 2 Milcomms Satellites

Codan Receives JITC Certification For 2110 HF Manpack

Northrop Grumman Bids for Marine Corps Common Aviation CnC

TIME AND SPACE
ISRO Puts Off GSLV Launch

Arianespace To Launch ESA's First Sentinel Satellite

ISRO Set To Launch Heaviest Satellite For Telecom And TV

The Flight Of The Dragon

TIME AND SPACE
Pakistani IT firm 'on top of the world' in Blackberry apps

Galileo's Navigation Control Hub Opens In Fucino

Launch Of New Russian Navigation Satellite Postponed To Next Year

China Launches Seventh Orbiter For Indigenous Global SatNav System

TIME AND SPACE
China opens skies to private air transport

European airports race to clear Christmas backlog

Air Force Flight Control Improvements

Britain's axed Harrier jets take final flight

TIME AND SPACE
S.Korea's Hynix says chip price slump will hit Q4 profit

Iridium Memories

Making Wafers Faster By Making Features Smaller

Taiwan scientists claim microchip 'breakthrough'

TIME AND SPACE
Mexico Quake Studies Uncover Surprises For California

ESA Unveils Latest Map Of World's Land Cover

TanDEM-X Ready For Routine Operations In 2011

Season's Greetings: NASA Views The Change Of Seasons

TIME AND SPACE
Denmark cancels Australian toxic waste shipment

The Sweetness of Biodegradable Plastics

Ecology watchdog warns of future damage from Hungary spill

New Catalysts Hold Promise For Air Quality


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement