Space Industry and Business News  
STELLAR CHEMISTRY
Hot stars are plagued by giant magnetic spots, ESO data shows
by Staff Writers
Munich, Germany (SPX) Jun 02, 2020

Astronomers using ESO telescopes have discovered giant spots on the surface of extremely hot stars hidden in stellar clusters, called extreme horizontal branch stars. This image shows an artist's impression of what one of these stars, and its giant whitish spot, might look like. The spot is bright, takes up a quarter of the star's surface and is caused by magnetic fields. As the star rotates, the spot on its surface comes and goes, causing visible changes in brightness.

Astronomers using European Southern Observatory (ESO) telescopes have discovered giant spots on the surface of extremely hot stars hidden in stellar clusters. Not only are these stars plagued by magnetic spots, some also experience superflare events, explosions of energy several million times more energetic than similar eruptions on the Sun.

The findings, published in Nature Astronomy, help astronomers better understand these puzzling stars and open doors to resolving other elusive mysteries of stellar astronomy.

The team, led by Yazan Momany from the INAF Astronomical Observatory of Padua in Italy, looked at a particular type of star known as extreme horizontal branch stars - objects with about half the mass of the Sun but four to five times hotter.

"These hot and small stars are special because we know they will bypass one of the final phases in the life of a typical star and will die prematurely," says Momany, who was previously a staff astronomer at ESO's Paranal Observatory in Chile. "In our Galaxy, these peculiar hot objects are generally associated with the presence of a close companion star."

Surprisingly, however, the vast majority of these extreme horizontal branch stars, when observed in tightly packed stellar groups called globular clusters, do not appear to have companions. The team's long-term monitoring of these stars, made with ESO telescopes, also revealed that there was something more to these mysterious objects.

When looking at three different globular clusters, Momany and his colleagues found that many of the extreme horizontal branch stars within them showed regular changes in their brightness over the course of just a few days to several weeks.

"After eliminating all other scenarios, there was only one remaining possibility to explain their observed brightness variations," concludes Simone Zaggia, a study co-author from the INAF Astronomical Observatory of Padua in Italy and a former ESO Fellow: "these stars must be plagued by spots!"

Spots on extreme horizontal branch stars appear to be quite different from the dark sunspots on our own Sun, but both are caused by magnetic fields. The spots on these hot, extreme stars are brighter and hotter than the surrounding stellar surface, unlike on the Sun where we see spots as dark stains on the solar surface that are cooler than their surroundings.

The spots on extreme horizontal branch stars are also significantly larger than sunspots, covering up to a quarter of the star's surface. These spots are incredibly persistent, lasting for decades, while individual sunspots are temporary, lasting only a few days to months. As the hot stars rotate, the spots on the surface come and go, causing the visible changes in brightness.

Beyond the variations in brightness due to spots, the team also discovered a couple of extreme horizontal branch stars that showed superflares - sudden explosions of energy and another signpost of the presence of a magnetic field. "They are similar to the flares we see on our own Sun, but ten million times more energetic," says study co-author Henri Boffin, an astronomer at ESO's headquarters in Germany. "Such behaviour was certainly not expected and highlights the importance of magnetic fields in explaining the properties of these stars."

After six decades of trying to understand extreme horizontal branch stars, astronomers now have a more complete picture of them. Moreover, this finding could help explain the origin of strong magnetic fields in many white dwarfs, objects that represent the final stage in the life of Sun-like stars and show similarities to extreme horizontal branch stars.

"The bigger picture though," says team member, David Jones, a former ESO Fellow now at the Instituto de Astrofisica de Canarias, Spain, "is that changes in brightness of all hot stars - from young Sun-like stars to old extreme horizontal branch stars and long-dead white dwarfs - could all be connected. These objects can thus be understood as collectively suffering from magnetic spots on their surfaces."

"A plague of magnetic spots among the hot stars of globular clusters"


Related Links
European Southern Observatory
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
New infrared telescope to help find Universe's "hidden treasures" in real time
Canberra, Australia (SPX) May 27, 2020
A new infrared telescope, to be designed and built by astronomers at The Australian National University (ANU), will monitor the entire southern sky in search of new cosmic events as they take place. DREAMS - the Dynamic REd All-Sky Monitoring Survey - will be located at the historic Siding Spring Observatory in northern New South Wales. The telescope will be used by researchers all over the globe and propel Australia to the forefront of the emerging field of transient astronomy - the study o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Kyoto scientists announce a 'nuclear' periodic table

SpaceChain invests in Core Semiconductor to drive open Direct Satellite-to-Devices Communication

UK commits new funding to combat space debris

Designing a flexible material to protect buildings, military personnel

STELLAR CHEMISTRY
UK nears final stage of Skynet satellite contract competition

Roccor creates Helical L-Band Antenna for first-ever space demonstration of Link 16 Networks

NIST researchers boost microwave signal stability a hundredfold

IBCS Goes Agile

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Harnessing space to save lives at sea

Out-of-the-box spoofing mitigation with Galileo's OS-NMA service

Galileo in high latitudes and harsh environments

New BeiDou satellite starts operation in network

STELLAR CHEMISTRY
Sirkorsky awarded $17.9M modification for work on the H-53K

U.S. Air Force scales back fitness testing, citing COVID-19 concerns

AFRL, AFSOC launch palletized weapons from cargo plane

F-35 costs falling, Pentagon estimates indicate

STELLAR CHEMISTRY
DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Xilinx 'lifts off' with launch of industry's first 20nm space-grade FPGA for space applications

'One-way' electronic devices enter the mainstream

Huawei says 'survival' at stake after US chip restrictions

STELLAR CHEMISTRY
Calling for ideas for next Earth Explorer

NASA's AIM Spots First Arctic Noctilucent Clouds of the Season

Volcanic eruptions reduce global rainfall

ESA's oldest Earth-observer images Delhi airport

STELLAR CHEMISTRY
Gold mining with mercury threatens health of communities miles downstream

Copenhagen under fire over massive sewage dump

Amazon shareholders reject dissident moves to reshape company

Bulgarian minister charged over illegal waste imports from Italy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.