Space Industry and Business News  
STELLAR CHEMISTRY
Holding up a mirror to a dark matter discrepancy
by Staff Writers
New Haven CT (SPX) Sep 14, 2020

stock illustration only

The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Dark matter is the invisible glue that keeps stars bound together inside a galaxy. It makes up most of a galaxy's mass and creates an invisible scaffold that tethers galaxies to form clusters.

Dark matter does not emit, absorb, or reflect light. It does not interact with any known particles. Its presence is known only through its gravitational pull on visible matter in space.

Although dark matter is lightly smeared throughout the universe, it is heaped in regions of space called galaxy clusters. Each of these massive clusters, held together by gravity, is made up of about 1,000 individual galaxies - each of which carries its own dollop of dark matter.

In a new study in the journal Science, Yale astrophysicist Priyamvada Natarajan and a team of international researchers analyzed Hubble Space Telescope images from several massive galaxy clusters and found that the smaller dollops of dark matter associated with cluster galaxies were significantly more concentrated than predicted by theorists.

The finding implies there may be a missing ingredient in scientists' understanding of dark matter.

"There's a feature of the real universe that we are simply not capturing in our current theoretical models," said Natarajan, a senior author of the study and a professor of astronomy and physics at Yale. "This could signal a gap in our current understanding of the nature of dark matter and its properties, as this exquisite data has permitted us to probe the detailed distribution of dark matter on the smallest scales."

Astronomers are able to "map" the distribution of dark matter within galaxy clusters via the bending of light the galaxies produce - a concept called gravitational lensing. Like a funhouse mirror, gravitational lensing distorts the shapes of background galaxies that appear in telescope images of cluster galaxies. The higher the concentration of dark matter in a cluster, the more dramatic the observed lensing effects.

The researchers used images from NASA's Hubble Space Telescope, coupled with spectroscopy from the European Southern Observatory's Very Large Telescope, to produce high-fidelity dark-matter maps.

A 3D view of the data showed the presence of dark matter hills, mounds, and valleys. From this perspective the mapped dark matter looks like a mountain range, with peaked regions. The peaks are the dollops of dark matter associated with individual cluster galaxies.

The especially high quality of the study's data allowed the researchers to test whether these dark matter landscapes matched theory-based computer simulations of galaxy clusters with similar masses, located at roughly the same distances.

What they discovered was that the simulations did not show any of the same level of dark-matter concentration on the smallest scales - the scales associated with individual cluster galaxies.

"To me personally, detecting a gnawing gap - a factor of 10 discrepancy in this case - between an observation and theoretical prediction is very exciting," Natarajan said. "A key goal of my research has been testing theoretical models with the improving quality of data to find these gaps. It's these kinds of gaps and anomalies that have often revealed that either we were missing something in the current theory, or it points the way to a brand-new model, which will have more explanatory power."

Natarajan has spent more than a decade confronting theoretical models of dark matter with data from gravitational lensing. "The quality of data and the sophistication of models have only now converged to permit stress testing of the cold dark matter paradigm, and it has revealed a crack," she said.


Related Links
Yale University
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


STELLAR CHEMISTRY
Zooming in on dark matter
Durham UK (SPX) Sep 03, 2020
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space. An international team of researchers, including Durham University, UK, used supercomputers in Europe and China to focus on a typical region of a computer-generated universe. The zoom they were able to achieve is the equivalent of being able to see a flea on the surface of the Moon. This allowed them to make detailed pictures and analyses of hund ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
GITAI and Nanoracks demonstrate GITAI robot inside the Nanoracks Bishop Airlock

ESA's polar station marks three decades satellite tracking

Expanding ESTEC's Test Centre

Making Perwave

STELLAR CHEMISTRY
Air Force Research Laboratory Tracks Sporadic E

Lockheed Martin to build Mesh Network of 10 smallsats

Lockheed, York nab $281.6M for new military satellite network

New US Space Force technology beats satellite jamming attempts in recent test

STELLAR CHEMISTRY
STELLAR CHEMISTRY
Tech combo is a real game-changer for farming

Launch of Russia's Glonass-K satellite postponed until October

GPS 3 receives operational acceptance

Air Force navigation technology satellite passes critical design review

STELLAR CHEMISTRY
New airship production commences in Israel

China airshow 'will be held' in November, say backtracking organisers

AFRICOM begins B-52 training missions in North Africa

How the US Air Force is making it easier for aircraft maintainers to see at night

STELLAR CHEMISTRY
New technology lets quantum bits hold information for 10,000 times longer than previous record

DARPA Selects Teams to Increase Security of Semiconductor Supply Chain

Pentagon: It's time to bring microelectronics manufacturing to the U.S.

Artificial materials for more efficient electronics

STELLAR CHEMISTRY
China launches new optical remote-sensing satellite

Machine-learning nanosatellites to monitor global trade

Momentus awarded NASA TROPICS Pathfinder mission

Space Flight Laboratory reports dual launch of atmospheric microsats

STELLAR CHEMISTRY
Sick of city din? Try 'noise-cancelling headphones' for your flat

In EU, 1 in 8 deaths linked to pollution: report

Bolsonaro slams 'cancer' of environmental NGOs

Mauritian citizen becomes powerful voice for oil spill anger









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.