Space Industry and Business News  
SOLAR DAILY
High-speed surveillance in solar cells catches recombination red-handed
by Staff Writers
Osaka, Japan (SPX) Feb 15, 2019

This is a schematic diagram illustrating the principle of tip-synchronized time-resolved electrostatic force microscopy.

A research team at Osaka University has developed an improved method for producing microscope images that can spot speedy electrons zipping through nanomaterials used in solar panels.

By applying laser light to the device at just the right times, this group achieved nanosecond time resolution for the first time while maintaining the magnification. This work could improve the quality of photovoltaic materials for devices such as solar panels by helping to identify and eliminate inefficiencies during the manufacturing process.

Surveillance cameras are ubiquitous, and extremely valuable to the police when trying to catch thieves. However, cameras that record only a single movie frame per minute would be useless for apprehending speedy robbers who can make their getaway in less than sixty seconds.

Solar panels harness the power of the sun when electrons become excited to a higher energy level, leaving a void, or "hole", behind. However, if an electron recombines with a hole before reaching the electrode, the harvested energy is lost, "robbing" the device of critical efficiency.

Currently available microscopy methods are too slow to catch the miscreants in the act. So the team at Osaka used electrostatic force microscopy (EFM), in which a tiny, vibrating cantilever tip is made sensitive to electric charges passing beneath it.

EFM is still usually too slow to watch electrons and holes in motion, but their key innovation was to apply synchronized laser pulses that hit the sample at the same point of the cantilever's oscillation.

By altering the delay time between the start of the cycle and the laser pulse, they were able to create a movie with frames as fast as 300 nanoseconds. "This is the first time anyone was able to combine nanosecond time resolution without sacrificing magnification," said lead author Kento Araki.

When the researchers probed the "scene of the crime", they were able to obtain video evidence of recombination as it was occurring.

This method may be extremely useful for designing more efficient solar panels by reducing the energy losses due to recombination. According to senior author Takuya Matsumoto, "the research is also potentially useful for the study of catalysts or batteries that depend on light activation."

Research Report: "Time-resolved electrostatic force microscopy using tip-synchronized charge generation with pulsed laser excitation"


Related Links
Osaka University
All About Solar Energy at SolarDaily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SOLAR DAILY
Researchers develop flags that generate energy from wind and sun
Manchester UK (SPX) Feb 12, 2019
Scientists have created flags that can generate electrical energy using wind and solar power. The novel wind and solar energy-harvesting flags have been developed using flexible piezoelectric strips and flexible photovoltaic cells. Piezoelectric strips allow the flag to generate power through movement, whilst the photovoltaics is the best known method of harnessing electric power by using solar cells. The study, conducted by researchers at The University of Manchester, is the most adva ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR DAILY
Lefty or righty molecules lend a hand to material structures

Architecting a new breed of high performance computing for virtual training environments

Using artificial intelligence to engineer materials' properties

Blockchain provides security, traceability for smart manufacturing

SOLAR DAILY
Raytheon awarded $406M for Army aircraft radio system

Lockheed Martin to develop cyber electronic warfare pod for UAVs

Britain to spend $1.3M for satellite antennas in light of Brexit

Reflectarray Antenna offers high performance in small package: DARPA

SOLAR DAILY
SOLAR DAILY
Kite-blown Antarctic explorers make most southerly Galileo positioning fix

Magnetic north pole leaves Canada, on fast new path

NOAA releases early update for World Magnetic Model

BeiDou achieves real-time transmission of deep-sea data

SOLAR DAILY
Spain joins France, Germany on new combat fighter

Bell awarded $240M for 12 Viper helicopters for Bahrain

Airbnb eyes the sky with hire of aviation exec

Brazil's Embraer sells 12 military aircraft to Nigeria

SOLAR DAILY
Penn engineers develop room temperature, two-dimensional platform for quantum technology

Boosting solid state chemical reactions

Quantum strangeness gives rise to new electronics

Life on the edge in the quantum world

SOLAR DAILY
Open-access sat data allows tracking of seasonal population movements

Science key to taking the pulse of our planet

New scale to characterize strength and impacts of atmospheric river storms

Earth-i Updates Satellite Map of Queensland, Australia

SOLAR DAILY
NUS marine scientists find toxic bacteria on microplastics retrieved from tropical waters

Light pollution affects most of the planet's key wildlife areas

Holloman Air Force Base receives notice for groundwater contamination

Green water-purification system works without heavy metals or corrosive chemicals









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.