Subscribe free to our newsletters via your
. Space Industry and Business News .




SOLAR SCIENCE
High-speed solar winds increase lightning strikes on Earth
by Staff Writers
London, UK (SPX) May 19, 2014


These results could prove useful for weather forecasters, since these solar wind streams rotate with the Sun, sweeping past the Earth at regular intervals, accelerating particles into Earth's atmosphere.

Scientists have discovered new evidence to suggest that lightning on Earth is triggered not only by cosmic rays from space, but also by energetic particles from the Sun.

University of Reading researchers found a link between increased thunderstorm activity on Earth and streams of high-energy particles accelerated by the solar wind, offering compelling evidence that particles from space help trigger lightning bolts.

Publishing their study in IOP Publishing's journal Environmental Research Letters, researchers from Reading's Department of Meteorology found a substantial and significant increase in lightning rates across Europe for up to 40 days after the arrival of high-speed solar winds, which can travel at more than a million miles per hour, into the Earth's atmosphere.

A summary of the findings can be found in the associated Video Abstract.

Although the exact mechanism that causes these changes remains unknown, the researchers propose that the electrical properties of the air are somehow altered as the incoming charged particles from the solar wind collide with the atmosphere.

The results could prove useful for weather forecasters, since these solar wind streams rotate with the Sun, sweeping past the Earth at regular intervals, accelerating particles into Earth's atmosphere. As these streams can be tracked by spacecraft, this offers the potential for predicting the severity of hazardous weather events many weeks in advance.

Lead author of the study, Dr Chris Scott, said: "Our main result is that we have found evidence that high-speed solar wind streams can increase lightning rates. This may be an actual increase in lightning or an increase in the magnitude of lightning, lifting it above the detection threshold of measurement instruments.

"Cosmic rays, tiny particles from across the Universe accelerated to close to the speed of light by exploding stars, have been thought to play a part in thundery weather down on Earth, but our work provides new evidence that similar, if lower energy, particles created by our own Sun also affect lightning.

"As the Sun rotates every 27 days these high-speed streams of particles wash past our planet with predictable regularity. Such information could prove useful when producing long-range weather forecasts."

Professor Giles Harrison, head of Reading's Department of Meteorology and co-author of the ERL article, said: "In increasing our understanding of weather on Earth we are learning more about its important links with space weather. Bringing the topics of Earth Weather and Space Weather ever closer requires more collaborations between atmospheric and space scientists, in which the University of Reading is already leading the way."

To arrive at their results, the researchers analysed data on the strikes of lightning over the UK between 2000 and 2005, which was obtained from the UK Met Office's lightning detection system. They restricted their data to any event that occurred within a radius of 500 km from central England.

The record of lightning strikes was compared with data from Nasa's Advanced Composition Explorer (ACE) spacecraft, which lies between the Sun and the Earth and measures the characteristics of solar winds.

After the arrival of a solar wind at the Earth, the researchers showed there was an average of 422 lightning strikes across the UK in the following 40 days, compared to an average of 321 lightning strikes in the 40 days prior the arrival of the solar wind. The rate of lightning strikes peaked between 12 and 18 days after the arrival of the solar wind.

The solar wind consists of a constant stream of energetic particles-mainly electrons and protons-that are propelled from the Sun's atmosphere at around a million miles per hour. The streams of particles can vary in density, temperature and speed and sweep past Earth every 27 days or so, in line with the time it takes the Sun to make one complete rotation relative to the Earth.

The Earth's magnetic field provides a sturdy defence against the solar wind, deflecting the energetic particles around the planet; however, if a fast solar stream catches up with a slow solar stream, it generates an enhancement in both the material and the associated magnetic field.

In these instances, the energetic particles can have sufficient energies to penetrate down into the cloud-forming regions of the Earth's atmosphere and subsequently affect the weather that we experience.

"We propose that these particles, while not having sufficient energies to reach the ground and be detected there, nevertheless electrify the atmosphere as they collide with it, altering the electrical properties of the air and thus influencing the rate or intensity at which lightning occurs," said Dr Scott.

The increase in the rate of lightning after the arrival of solar winds was corroborated by a significant increase in the days in which thunder was heard, which were recorded at UK Met Office stations around the UK.

'Evidence for solar wind modulation of lightning' (C J Scott et al 2014 Environ. Res. Lett. 9 055004)

.


Related Links
Institute of Physics
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
NASA spots a square hole in the sun
Washington (UPI) May 12, 2013
An updraft of solar winds ripped a hole in the sun's outer atmosphere with remarkable geometric precision, creating a nearly perfect square. The dark spot, seen in the video and picture, is known as a "coronal hole." It is the gap made when solar winds rip up, out and away from the sun's surface at astonishing speeds - the solar winds taking advantage of a cooler, weakened spot in the ... read more


SOLAR SCIENCE
Is there really cash in your company's trash?

Computer simulations enable better calculation of interfacial tension

Professors' super waterproof surfaces cause water to bounce like a ball

New Technique Safely Penetrates Top Coat for Perfect Paint Job

SOLAR SCIENCE
Airbus boosts communication capability for British ships

Harris providing tactical communications to country in central Asia

Production Ramps Up on next Advanced EHF Birds

A Multi-Billion Dollar Military Satellite Market

SOLAR SCIENCE
SpaceX-3 Mission To Return Dragon's Share of Space Station Science

SpaceX supply capsule heads back to Earth

Replacing Russian-made rocket engines is not easy

Pre-launch processing begins for the O3b Networks satellites

SOLAR SCIENCE
British MoD works on 'quantum compass' technology to replace GPS

Iran to Host Russian Satellite Navigation Facility

Moscow to suspend American GPS sites on Russian territory from June

NASA Uses GPS to Find Sierra Water Weight

SOLAR SCIENCE
Engineers Find Way to Lower Risk of Midair Collisions for Small Aircraft

Berliners to vote on future of airport-turned-playground

Russia investing in aircraft manufacturing

No Swiss Gripen fighter deal for Sweden, Saab

SOLAR SCIENCE
Magnetic Compass Orientation in Birds Builds Case for Bio-Inspired Sensors

A Lab in Your Pocket

Molecular Foundry Opens the Door to Better Doping of Semiconductor Nanocrystals

New lab-on-a-chip device overcomes miniaturization problems

SOLAR SCIENCE
New Japan satellite to survey disasters, rain forests

Earth Science Applications Travelogue: Maury Estes

GOES-R Propulsion and System Modules Delivered

Experts demonstrate versatility of Sentinel-1

SOLAR SCIENCE
Dangerous nitrogen pollution could be halved

Study lists dangerous chemicals linked to breast cancer

Study strengthens link between neonicotinoids and collapse of honey bee colonies

China detains 60 people over incinerator protest




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.