Space Industry and Business News  
INTERNET SPACE
High-resolution MRI imaging inspired by the humble antenna
by Staff Writers
Houghton MI (SPX) Nov 01, 2018

Proposed radio frequency probes to create homogeneous magnetic field within a phantom under study: single multi dielectric patch surface probe (upper left), volume probe composed of two vis-a-vis placed dielectric patch probes (lower left), volume probe composed of two cylindrical patches (upper right) and cosine-profiled patches (lower right).

High-resolution magnetic resonance imaging (MRI) machines can work better by changing the structure of radio probes from coils to antennas.

How can you make a high-frequency MRI machine more precise? By taking an electrical engineering approach to creating a better, uniform magnetic field.

In a new study published in Transactions on Microwave Theory and Techniques, researchers have discovered that radio frequency probes with structures inspired by microstrip patch antennas increase MRI resolution in high-frequency MRI machines, when compared to conventional surface coils used now.

"When frequencies become higher, wavelengths become shorter, and your magnetic field loses uniformity," says Elena Semouchkina, an associate professor of electrical and computer engineering at Michigan Tech. "Uniformity is important for high resolution images, so we proposed a new approach to developing these probes."

Semouchkina explains that kind of antenna that you see on the top of a building isn't quite the same thing used here, but instead, the team's design was inspired by microstrip patch antenna (MPA). The design is relatively simple: MPAs are made of a flat piece of metal grounded by a larger piece of metal. They're cheap, simple, and easy to make, which is why they're so often used in telecommunications.

MRIs work by issuing radio frequency pulses in a magnetic field via probes with coils or bird-cage like structures. That's then used to create an image.

But those conventional coils have frequency limits: too high and they can't create uniformed magnetic fields at the volume researchers need.

MPAs are an alternative where waves oscillate in the cavity formed between the patch and ground plane electrodes, which are accompanied by currents in the patch electrode and, respectively, oscillating magnetic fields around the patch, providing a magnetic field that is both even and strong.

"While the complexity of birdcage coils increases with the increase in operation frequency, patch-based probes can provide quality performance in the higher microwave range while still having a relatively simple structure," Semouchkina says. They also showed smaller radiation losses, making them competitive with, even better, than conventional coils.

Because of the damage high-frequency radio waves cause to humans, the study was limited to high frequency machines - not the metal tube that we're used to seeing in hospitals and medical centers. Humans can only sustain frequencies up to seven Teslas, but ultrahigh fields up to 21.1 Teslas can be used in testing on animal models, and in tissue samples.

Semouchkina is already known for her work involving invisibility cloaks, which involve redirecting electromagnetic waves around an area to hide an object. "We use some of the same approaches that we developed in cloaking devices here, like making antenna smaller," she said.

Research paper


Related Links
Michigan Technological University
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


INTERNET SPACE
Apple Watch supplier under fire over China student labour
Washington (AFP) Oct 30, 2018
Apple is investigating a factory in southwest China after a labour rights group said the tech giant's supplier forced student workers to work "like robots" to assemble its popular Apple Watch. Many were compelled to work in order to get their vocational degrees and had to do night shifts, according to an investigation by Hong Kong-based NGO Students and Scholars Against Corporate Misbehaviour (SACOM). SACOM interviewed 28 students at the plant in Chongqing municipality over the summer, and all o ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
Eye-tracking glasses provide a new vision for the future of augmented reality

New composite material that can cool itself down under extreme temperatures

Novel material could make plastic manufacturing more energy-efficient

Origami, 3D printing merge to make complex structures in one shot

INTERNET SPACE
ULA contracted by Air Force for Delta IV rocket launch

Navistar contracted by Army for MRAP tech support

Scientists want to blast holes in clouds with laser to boost satellite communication

Military communications satellite online in orbit following launch

INTERNET SPACE
INTERNET SPACE
China launches twin BeiDou-3 satellites

Army researchers' technique locates robots, soldiers in GPS-challenged areas

Boeing to provide technical work on JDAM GPS-guided bombs

New Study Tracks Hurricane Harvey Stormwater with GPS

INTERNET SPACE
Indonesia warns over 'fake news' after deadly jet crash

Chinese airlines' profit hit as yuan weakens, fuel costs rise

A Chinese farmer couldn't fly a plane, so he built one

US indicts 10 Chinese over scheme to steal aerospace tech

INTERNET SPACE
Brain-inspired methods to improve wireless communications

Tianhe-2 supercomputer works out the criterion for quantum supremacy

Tests show integrated quantum chip operations possible

Researchers create scalable platform for on-chip quantum emitters

INTERNET SPACE
Location of large mystery source of banned ozone depleting substance uncovered

Researchers develop an operative complex scheme for short-range weather forecasts

Copernicus Sentinel-5P reveals new nasties

Zooming in on Mexico's landscape

INTERNET SPACE
Dutch join G7-led push to rid oceans of plastics

Philippines' spruced up Boracay re-opens with new rules

Philippines to re-open 'cesspool' Boracay after clean up

EU parliament approves ban on single-use plastics









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.